(Open Systems Interconnection)

1

The OSI model

- A generic model, not a specific protocol
- Breaks down networking into simpler parts
- Helps us understand, discuss and compare networks

2

Layer 1 - Physical Layer

- Transfers stream of bits from A to B
- Defines connectors, type of cable, maximum length, topology, voltages for 0 and 1, speed (bits per second)

No concept of bytes or frames

Layer 2 - Lillk Layer

- Send data between adjacent machines
- Organise bits into bytes and frames
 - Special bit patterns as delimiters
- Address frames to a specific machine on a shared (broadcast) medium

- Some layer 2's detect corrupted frames
- Some layer 2's retransmit corrupted frames (but not ethernet)

4

Layer 3 - Network Layer

- Send data through multiple hops to far distant networks - "internetwork"
- Move data between different Layer 2 types
- Uniform numbering scheme
- Globally scalable

5__

Building networks

Repeaters (Hubs)

7

Switching (Bridging)

IP Forwarding - multiple hops

The nourgiass model

10

The Internet Protocol (IP)

- Layer 3 in the TCP/IP stack
- Delivers chunks of data "datagrams" across an internetwork
- Scales to global network The Internet
- Integrates different LAN technologies
- RFC 791

11

IP Datagram Structure

- Header
 - Source IP address where it came from
 - Destination IP address where it is going to
 - Header checksum
 - Other fields (TTL, Layer 4 protocol identifier, Fragmentation information)
- Data
 - The actual data you want to carry
- Total size up to MTU bytes
 - What limits the MTU?

ir Addresses / ir indilibeis

- IP number identifies a device (host)
- Globally unique for every host
 - Why?
- Independent of layer 2 addresses
- 32 bit binary number

Example:

11001110000110111110111000000101

13

IP numbers (continued)

- Convert to decimal for convenience
- Group into bytes (8 bits) and convert each in turn; separate with periods

 There is nothing special about the 8 bit boundaries; to the computer it is still a single 32 bit number

14

What is forwarding?

- Receiving a datagram of one interface and resending it on anothor Network 1
- Why? Because Layer 2 can only send to direct neighbours (on the same link)
- Also lets us transfer data between different network types

what is a router?

- A host with two or more interfaces and which has been configured to forward datagrams *
- Works at layer 3: receives datagrams and forwards them based on the destination IP address
- For a full definition see RFC 1812
- Older documents call it a "Gateway" but this term is normally used for a layer 7 gateway

16

What is a router? (Contd)

- A router is connected to two or more networks
- The Golden Rules say that every network must have its own prefix
- Therefore a router must have two or more IP addresses - one for each interface

17

What happens when a router receives a datagram?

- First it checks to see if the destination address is local (i.e. the router itself is the final destination)
- Next it decrements the Time To Live (TTL) field in the IP header. If it reaches zero, the datagram is discarded
- Finally it looks up the destination in a forwarding table to decide where to send it next
- Could be on a directly-connected network, or could have to send it via another router

^{*} Otherwise it is just a multi-homed host

Forwarding is nop-by-nop

- Each router can only communicate directly with devices which are on the same networks that it is connected to (Layer 2)
- Each router gets the datagram one hop closer to the destination
- Each router makes an independent decision as to the next hop (the route is not preplanned)
- Each router has a different view of the world so has a different forwarding table

19

Using prefixes for forwarding

- We don't list every IP number on the Internet
 the table would be huge
- Instead, the forwarding table contains prefixes (network numbers)
- "If the first /n bits matches this entry, send the datagram this way"
- If more than one prefix matches, the longest prefix wins (more specific route)
- 0.0.0.0/0 is "default route" matches anything, but only if no other prefix matches

20

Allocating IP numbers on an Internetwork

- Easy: follow the Golden Rules!
 - 1. Give each network its own prefix
 - 2. Give each machine an IP number using this prefix plus a host number
 - 3. Don't use the first and last host numbers (all 0's and all 1's)

ip allocation example

Allocate IP numbers to the following devices

22

Subdividing prefixes

- Every network must have its own network number (prefix)
- You will most likely only get one prefix from your provider
- So if you have more than one network, you have to divide a large prefix into several smaller ones

23

Subdividing prefixes: example

- You have been allocated 195.176.112.0/25
- How many IP numbers is this?
- What is the smallest IP number available? The largest IP number available?

Example (conta)

- We have decided we need 8 separate networks, linked by routers
- Each network needs its own prefix
- So we need more prefixes but each with fewer IP numbers available

25

Example (contd)

Prefix we have been given

195.176.112.0/25

>11000011 10110000 01110100 0<u>hhhhhhh</u>

195.176.112.0 to 195.176.112.127

(195.176.112.1 to 195.176.112.126 usable)

26

Example (contd)

Now let's make the prefix longer

11000011 10110000 01110100 0nnnhhhh

- What is the new prefix length?
- Now we have 3 more bits of network number and 3 less bits of host number
- How many combinations of nnn are there?

Example (conta)

• We have created these new prefixes

11000011	10110000	01110100	0000 <u>hhhh</u>
	10110000		
11000011	10110000	01110100	0010 <u>hhhh</u>
11000011	10110000	01110100	0011 <u>hhhh</u>
11000011	10110000	01110100	0100 <u>hhhh</u>
11000011	10110000	01110100	0101 <u>hhhh</u>
11000011	10110000	01110100	0110 <u>hhhh</u>
11000011	10110000	01110100	0111 <u>hhhh</u>

28

Example (contd)

- How many hosts can each network have?
- What are the network numbers we have created?

29

Dividing Prefixes - class example

• Here is a prefix:

192.168.34.0/24

- What is the smallest and largest IP number in this range?
- Turn this into two /25 prefixes
- What are the smallest and largest IP numbers in each of the new ranges?

Aggregation Tree

A useful tool for dividing prefixes

 "Aggregation" is the process of combining smaller prefixes into larger ones - the reverse of what we have been doing

31

Aggregation Tree (contd)

 You don't have to divide your space into equal sized prefixes

 But check your work - work out the ranges of IP numbers and see that they don't overlap

32