

IP Address Management

INET 2000 Network Training Workshops

Overview

- Definitions
- Principles of Addressing
- Management
- Addressing Plan Example
- References

Definitions

Allocation and Assignment

- Allocation
 - A block of address space held by an IR for subsequent allocation or assignment
- Assignment
 - A block of address space used to address an operational network
 - May be provided to LIR customers, or used for an LIR's infrastructure ("self-assignment")

Definitions

Addressing

- ◆ Non portable 'Provider Aggregatable' (PA)
 - Customer uses members' address space
 - Customer has to renumber if changing ISP
 - Only way to effectively <u>scale</u> the Internet
- Portable 'Provider Independent' (PI)
 - Customer gets addresses independent from ISP
 - Customer keeps addresses when changing ISP
 - Bad for size of routing tables
 - Customer may be filtered, flap dampened...

Principles of Addressing

- Separate customer & infrastructure address pools
 - Manageability
 - Different personnel manage infrastructure and assignments to customers
 - Scalability
 - Easier renumbering customers are difficult, infrastructure is easy

Principles of Addressing

- Routing protocols
 - ◆Use an IGP (OSPF, ISIS, EIGRP) for:
 - Carrying network infrastructure addresses used by dynamic routing protocols
 - Examples
 - Point to point addresses of backbone connections
 - Router Loopback addresses
 - Minimise what is carried in IGP for efficiency

Principles of Addressing

- **→IBGP**
 - Carry all other network prefixes in iBGP
- ◆Examples
 - Customer networks
 - RAS server address pools
 - Virtual web and content hosting
 - Mail, DNS servers
- ◆IBGP can carry 100,000k prefixes

Management - Simple Network

- First allocation from APNIC
 - ◆Infrastructure is known, customers are not
 - ◆20% free is trigger for next request

- Grow usage of blocks from edges
- Assign customers sequentially

Management - Simple Network

If second allocation is contiguous

Customers

Infrastructure

Infrastructure

20%

Customers

- Reverse order of division of first block
- Maximise contiguous space for infrastructure
 - Easier for debugging
- Customer networks can be discontiguous

Management - Many POPs

ASIA PACIFIC NETWORK INFORMATION CENTRE

Management - Many POPs

POP sizes

 Choose address pool for each POP according to need

Customer

- Loopback addresses
 - Keep together in one block
 - Assists in fault-resolution
- Customer addresses
 - Assign sequentially

loopbacks

Management - Many POPs

- 19 minimum allocation is not enough for all your POPs?
 - Deploy addresses on infrastructure first
- Common mistake
 - Reserving customer addresses on a per POP basis
- Do not constrain network plans due to lack of address space
 - Re-apply once address space has been used

Management - Multiple Exits

ASIA PACIFIC NETWORK INFORMATION CENTRE

Management - Multiple Exits

Create a 'national' infrastructure pool

National Infrastructure	20% free	POP1	POP2	POP3
----------------------------	-------------	------	------	------

- Carry in IGP
 - Eg. loopbacks, p2p links, infrastructure connecting routers and hosts which are multiply connected
- On a per POP basis
 - Consider separate memberships if requirement for each POP is very large from day one.

- To complete documentation
 - First need a technical PLAN
 - Documenting the architecture of the present and eventual goal
 - ◆IP addressing is fundamental part of network design
 - IP addressing 'planning' example to follow...

- Identify components of network
 - Customer services
 - ◆ISP internal infrastructure
- Identify phases of deployment
 - Starting off, 6 months, 12 months
- Identify equipment and topology changes
 - Need for redundancy
 - Need for increased scale

Network Plan

Network Plan

ASIA PACIFIC NETWORK INFORMATION CENTRE

Initial addressing plan

-numbers of host addresses (interfaces)

network-plan: 16 analogue dialup modems, vendor 'x' network-plan: LAN -web hosting (http1.1) network-plan: 5-8 leased line customers (/28) 128 network-plan: 15 LAN -NOC and Ops management network-plan: 10 LAN -mail, DNS, web servers internal loopback router interfaces network-plan: network-plan: router WAN ports router WAN ports (x 5 lines) network-plan:

Network Plan

Network plan at 6 months

-increases in hosts (interfaces)

Changed description

network-plan:	16/ 60	2 PRI dialup modems, vendor 'y'
network-plan:	5/ 11	LAN -web hosting (http1.1)
network-plan:	128/ 512	30 leased line customers (pool)
network-plan:	15/ 25	LAN -NOC and Ops management
network-plan:	10/ 16	LAN -mail,DNS, web servers internal
network-plan:	4/ 6	loopback router interfaces
network-plan:	2/ 2	router WAN ports
network-plan:	2/ 2	router WAN ports (x 8 lines)
network-plan:	0/ 60	2 PRI dialup modems
network-plan:	0/ 8	LAN-secondary servers

New hardware

Network Plan

Network plan at 12 months

-increases in hosts (interfaces)-one year total

network-plan:	16/60/	240	8 PRI dialup modems, vendor x
network-plan:	0/60/	240	8 PRI dialup modems, vendor y
network-plan:	5/11/	11	LAN -web hosting (http1.1)
network-plan:	128/512/		60 leased line customers (pool)
network-plan:	15/25/	40	LAN -NOC and Ops management
network-plan:	10/16/	35	LAN -mail, DNS, web servers internal
network-plan:	0/8/	8	LAN-secondary servers
network-plan:	2/2/	2	router WAN ports
network-plan:	2/2/	2	router WAN ports (x 8 lines)
network-plan:	4/6	12	loopback router interfaces

Can now determine subnet sizes

network-plan:	256	16/60/ 240	8 PRI dialup modems, vendor x
network-plan:	256	0/60/ 240	8 PRI dialup modems, vendor y
network-plan:	16	5/11/ 11	LAN -web hosting (http1.1)
network-plan:	1024	128/512/ 1024	60 leased line customers (pool)
network-plan:	64	15/25/ 40	LAN -NOC and Ops management
network-plan:	64	10/16/ 35	LAN -mail,DNS, web servers internal
network-plan:	8	0/8/ 8	LAN-secondary servers
network-plan:	4	2/2/ 2	router WAN ports
network-plan:	4	2/2/ 2	router WAN ports (x 8 lines)
network-plan:	16	4/6/ 12	loopback router interfaces

Addressing plan for network-plan

- determination of relative subnet addresses
- ◆ re-ordered large to small according to relative subnet size

network-plan:	0.0.0.0	1024	128/512/1024	60 leased line customers (pool)
network-plan:	0.0.4.0	256	16/60/240	8 PRI dial up modems, vendor x
network-plan:	0.0.5.0	256	0/60/240	8 PRI dial up modems, vendor y
network-plan:	0.0.6.0	64	10/16/35	LAN -mail,DNS, web internal
network-plan:	0.0.6.64	64	15/25/40	LAN -NOC and Ops management
network-plan:	0.0.6.128	16	5/11/11	LAN -web hosting (http1.1)
network-plan:	0.0.6.144	16	0/8/8	LAN -secondary servers
network-plan:	0.0.6.160	16	4/6/12	loopback router interfaces
network-plan:	0.0.6.176	4	2/2/2	router WAN ports (x8)

cumulative total 0.0.6.208

Addressing plan for network-plan

determination of subnet masks

```
network-plan:
              0.0.0.0
                       255.255.252.0
                                        1024 128/512/1024 60 leased line customers
network-plan:
              0.0.4.0
                       255.255.255.0
                                                        8 PRI dial up modems, vendor x
                                        256 16/60/240
             0.0.5.0 255.255.255.0
                                        256 0/60/240
network-plan:
                                                        8 PRI dial up modems, vendor y
network-plan:
             0.0.6.0 255.255.255.192 64 10/16/35
                                                        LAN -mail, DNS, web internal
network-plan: 0.0.6.64 255.255.255.192 64
                                            15/25/40
                                                        LAN -NOC & Ops management
network-plan: 0.0.6.128 255.255.255.240
                                        16 5/11/11
                                                         LAN -web hosting (http1.1)
network-plan: 0.0.6.144 255.255.255.240
                                                         LAN -secondary servers
                                        16 0/8/8
network-plan:
              0.0.6.160 255.255.255.240
                                        16 4/6/12
                                                         loopback router interfaces
network-plan:
              0.0.6.176 255.255.255.252
                                             2/2/2
                                                         router WAN ports (x 8)
```


Addressing plan for network-plan

connect to the Internet (full-time, part-time)?

```
network-plan: 0.0.0.0
                     255.255.252.0
                                    YES 1024 128/512/1024 60 leased customers
network-plan: 0.0.4.0
                                     PART 256 16/60/240 8 PRI dial up modems...
                   255.255.255.0
network-plan: 0.0.5.0 255.255.255.0
                                     PART 256
                                                 0/60/240 8 PRI dial up modems...
network-plan: 0.0.6.0 255.255.255.192 YES
                                           64 10/16/35 LAN -mail, DNS, web internal
network-plan: 0.0.6.64 255.255.255.192 YES 64 15/25/40 LAN -NOC & Ops managemen
network-plan: 0.0.6.128 255.255.255.240 YES 16
                                                 5/11/11
                                                          LAN -web hosting (http1.1)
network-plan: 0.0.6.144 255.255.255.240 YES 16
                                                 0/8/8
                                                          LAN -secondary servers
network-plan: 0.0.6.160 255.255.255.240 YES 16
                                                 4/6/12
                                                          loopback router interfaces
network-plan: 0.0.6.176 255.255.255.252 YES
                                                 2/2/2
                                                          router WAN ports (x 8)
```


Addressing plan complete

- total planned for customer assignments /22
- ◆ total planned for ISP infrastructure /24 + /23

network-plan:	0.0.0.0	255.255.252.0	YES	1024	128/512/1024	60 leased line customers
network-plan:	0.0.4.0	255.255.255.0	PART	256	16/60/240	8 PRI dial up modems
network-plan:	0.0.5.0	255.255.255.0	PART	256	0/60/240	8 PRI dial up modems
network-plan:	0.0.6.0	255.255.255.192	YES	64	10/16/35	LAN -mail,DNS, web internal
network-plan:	0.0.6.64	255.255.255.192	YES	64	15/25/40	LAN -NOC & Ops managemen
network-plan:	0.0.6.128	255.255.255.240	YES	16	5/11/11	LAN -web hosting (http1.1)
network-plan:	0.0.6.144	255.255.255.240	YES	16	0/8/8	LAN -secondary servers
network-plan:	0.0.6.160	255.255.255.240	YES	16	4/6/12	loopback router interfaces
network-plan:	0.0.6.176	255.255.255.252	YES	4	2/2/2	router WAN ports (x 8 lines)

detailed, efficient and accurate

Where To Get IP Addresses

- APNIC
 - http://www.apnic.net
- ◆ARIN
 - http://www.arin.net
- RIPE NCC
 - http://www.ripe.net
 - Membership required
- Fees are charged for services by all RIRs

Policy References

- **APNIC**
 - http://www.apnic.net/docs/add-manage-policy.html
- ◆ARIN
 - http://www.arin.net/regserv/IPv4services.htm
- ◆RIPE NCC
 - http://www.ripe.net/ripe/docs/ripe-185.html
- ◆RFC2050: RIR Allocation Guidelines
 - http://ftp.apnic.net/ietf/rfc/rfc2000/rfc2050.txt

Recommended Reading

- Classless techniques
 - **◆CIDR**
 - http://ftp.apnic.net/ietf/rfc/rfc1000/rfc1517-19.txt
 - Network Addressing when using CIDR ftp://ftp.uninett.no/pub/misc/eidnes-cidr.ps.Z
 - Variable Length Subnet Table
 http://ftp.apnic.net/ietf/rfc/rfc1000/rfc1878.txt
- Private Address Space
 - Address Allocation for Private Internets
 - http://ftp.apnic.net/ietf/rfc/rfc1000/rfc1918.txt
 - Counter argument: Unique addresses are good
 - http://ftp.apnic.net/ietf/rfc/rfc1000/rfc1817.txt

Questions?

