Security

AFNOG 3 Workshop

Security Implications of
connecting to the Internet

The Internet lets you connect to millions of

hosts
® Dbut they can also connect to you!

Many points of access (e.g. telephone, X25)
® even if you can trace an attack to a point on the
Internet, the real source may be untraceable

Your host runs many Internet services
® many potential points of vulnerability
® many servers run as "root" !

Other common attacks

Brute-force and Dictionary attacks
(password guessing)

Viruses
Trojan horses

Humans are often the weakest link
® "Hi, this is Bob, what's the root password?"

Main Security Concerns

e Confidentiality
® Keeping our data safe from prying eyes

® |Integrity
® Protecting our data from loss or unauthorised
alteration

@ Authentication and Authorisation
® |[s this person who they claim to be?
® |s this person allowed to do this?

e Availability

® Are our systems working when we need them?
(Denial of Service)

Network-based attacks

® Passive attacks
® e.g. packet sniffers, traffic analysis

® Active attacks
® ¢.g. connection hijacking, IP source spoofing,

exploitation of weaknesses in IP stack or
applications

@ Denial of Service attacks
® e.g. synflood

@ Attacks against the network itself
® ¢ g. smurf

Authentication: Passwords

® Can be guessed

e If too complex, users tend to write them
down

e If sent unencrypted, can be "sniffed" from
the network and re-used

Choosing good passwords

® Combinations of upper and lower-case
letters, numbers and symbols
® ‘prute force' attacker has to try many more
combinations

® Not in any dictionary, including hackers
dictionaries

$40&ycaf
"Money for nothing and your chicks for free"

wsRlvst?
"workshop students aRe not very sleepy today ?"

Authentication: Host name

® Very weak

® DNS is easily attacked (e.g. by loading false
information into cache)

@ Slight protection by ensuring that reverse
and forward DNS matches
® ¢e.g. Connection received from 80.248.72.254
® | ookup 80.248.72.254 -> noc.ws.afnog.org
® | ookup noc.ws.afnog.org -> 80.248.72.254

@ This is why many sites won't let you connect
unless your forward and reverse matches

Simple combinations

® The lock on your front door can be picked
® Two locks are better than one

@ The thief is more likely to try somewhere
else

11

Authentication: Source IP
address

® Not verified by the network (since not used

in datagram delivery)

® Datagrams are easily forged

® TCP 3-way handshake gives some degree

of protection, as long as you can't guess

TCP sequence numbers

® | egitimate example: controlling SMTP relaying
by source IP address

® Any UDP protocol is completely vulnerable

® e.g.NFS

Cryptographic methods

® Can provide REALLY SECURE solutions to

authentication, privacy and integrity

® Some are hard to implement, many different

tools, usually requires special clients

® Export and usage restrictions (less of a

problem these days)

® Take care to understand where the

weaknesses lie

IP source address AND password

authentication

® You can use "tcp wrappers"
(/etc/hosts.allow) to add IP source
authentication to any service run from inetd
® Forinfo and examples: man 5 hosts_access

® The application also typically has password
authentication

Exercise

® Enable telnet (note: bad idea!)
® Uncomment telnet ... tcp line in /etc/inetd.conf
® Killall -1 inetd
® Check other people can telnet to your machine

® Now restrict access to only yourself and your
neighbour
® Add two lines to top of /etc/hosts.allow
® telnetd : 80.248.72.12, 80.248.72.11 : allow
® telnetd : ALL : deny

® Get someone on a different row to try to
telnet to you. What happens if you telnet to
127.0.0.1 ?

Summary

Disable all services which are not needed

Apply security patches promptly; join the
announcement mailing lists

Good password management

Combine passwords with IP access controls
where possible

Use cryptographic methods where possible

1. "Private key" or "symmetric"
ciphers

clear clear
text text

Ne—=0
k k

The same key is used to encrypt the document
before sending and decrypt it at the far end

13

15

17

UNDERSTAND what you're doing

® A bad security solution is worse than no
security at all

@ Know what you're doing

Read all the documentation

Read sample configurations

Build test machines

Ask questions

Join the announcements mailing list for your
O/S and applications

® Test what you've done
® Try connecting from outside your network
® Try circumventing your own rules

Cryptographic methods:

Three important
components of
cryptographic

systems

Recommended reading:
"Applied Cryptography", Bruce Schnier

We assume an eavesdropper is
able to intercept the ciphertext

® How can they recover the cleartext?

Examples of symmetric ciphers

Features of symmetric ciphers

DES - 56 bit key length, designed by US ® Fast to encrypt and decrypt, suitable for
security service large volumes of data
3DES - effective key length 112 bits ® A well-designed cipher is only subject to
) brute-force attack; the strength is therefore
AES (Advanced Encryption Standard) - 128 directly related to the key length
to 256 bit key length
. . . ® Current recommendation is a key length of
Blowfish - 128 bits, optimised for fast at least 90 bits
operation on 32-bit microprocessors ® i.e. to be fairly sure that your data will be safe
IDEA - 128 bits, patented (requires a licence for at least 20 years
for commercial use) ® Problem - how do you distribute the keys?
19
2. "Hashing" - one-way Examples
encryption
@ Unix crypt() function
® MD5 (Message Digest 5) - 128 bit hash
® SHA1 (Secure Hash Algorithm) - 160 bits
——<— I
hashing Fixed length ® No two documents have yet been
clear function "message digest" discovered which have the same MD5
text digest!
Munging the document gives a short ® No feasible method to create any document
"message digest" (checksum). Not possible to go which has a given MD5 digest
back from the digest to the original document.
21
So what use is that? Exercise
a. Integrity checks
@ You can run many megabytes of data ® Exercise: on your machine type
through MD5 and still get only 128 bits to ® cat /etc/motd
check

® | ook at your neighbour's machine. Is their
file exactly the same as yours? Can you be

@ An attacker cannot feasibly modify your file
sure?

and leave it with the same MD5 checksum

® Gives your document a unique "fingerprint" ® md>5 /etc/motd
® Compare the result with your neighbour

® Now change ONE character in /etc/motd and
repeat the md5 test

23 ® Under Linux the command is "md5sum"

So what use is that?
b. Encrypted password storage
We don't want to keep cleartext passwords if

possible; the password file would be far too
attractive a target

® Store hash(passwd) in /etc/master.passwd

When user logs in, calculate the hash of the
password they have given, and compare it to
the hash in the password file

If the two hashes match, the user must have
entered the correct password

Notes on shared secret
authentication

Examples: APOP, CRAM-MD5

Sniffer cannot see the secret - but they can
see the challenge and hash of (challenge +
secret). This will allow them to try dictionary
and brute-force attacks to recover the
secret.

The secret must be stored in PLAIN TEXT
on the server for this method to work.

Generating encryption keys

Passphrase

entered by ——={§)—s 128-bit

user MD5 key
hash

Every passphrase generates a
different 128-bit key

25

27

29

So what use is that?
c. Shared secret authentication

® Using hashing, a user can prove that they
possess a password, without actually
sending it over the wire

® Usually called a "shared secret" in this case

. Challenge
Client = Server

hash(Challenge + Secret)

Server recalculates the hash using the
challenge it sent and its local copy of the
secret. OK if both hashes match.

So what use is that?
d. Generating encryption keys

@ Users cannot remember 128 bit binary
encryption keys

® However they can remember "passphrases”

® A hash can be used to convert a passphrase
into a fixed-length encryption key

® The longer the passphrase, the more
"randomness" it contains and the harder to
break. English text is typically only 1.3 bits of
randomness per character.
http://www.cranfield.ac.uk/docs/email/pgp/pgp-attack-faq.txt
http://www.counterpane.com/personal-entropy.html

So what use is that?
e. one-time passwords

¢ S/Key (OPIE)
® Cryptocard

So what use is that?
f. Registering copyright

By giving someone the MD5 digest of a
document, | can prove that | possessed the
document at that time, without having to
reveal its contents until later

Lots of other uses

Public key and Private key

The Public key and Private key are
mathematically related (generated as a pair)

It is easy to convert the Private key into the
Public key. It is not easy to do the reverse.

Key distribution problem is solved: you can
post your public key anywhere. People can
use it to encrypt messages to you, but only
the holder of the private key can decrypt
them.

Examples: RSA, Elgamal (DSA)

Protecting the private key

The security of the private key is paramount:
keep it safe!

Keep it on a floppy or a smartcard?
Prefer to keep it encrypted if on a hard drive

That means you have to decrypt it (using a
passphrase) each time you use it

An attacker would need to steal the file
containing the private key, AND know or
guess the passphrase

31

33

35

3. "Public key" ciphers

clear
text

8-

(public key)

cipher

text

ri

clear
text

(private key)

One key is used to encrypt the document,
a different key is used to decrypt it

Use for authentication:
reverse the roles of the keys

clear
text

Iy

(private key)

cipher

text

.

(public key)

If you can decrypt the document with the
public key, it proves it was written by the
owner of the private key (and was not changed)

Protecting the private key

Ik2

| (encrypted

| on disk)

Passphrase
entered by
user

hash

symmetric
cipher

key

reﬁ%y

for use

clear
text

Key lengths

@ Attacks on public key systems involve

mathematical attempts to convert the public
key into the private key. This is more
efficient than brute force.

Recent developments suggest that 1024-bit
keys might not be secure for long

Recommend using 2048-bit keys

When encrypting:

Use a symmetric cipher with a random key
(the "session key"). Use a public key cipher
to encrypt the session key and send it along
with the encrypted document.

. cipher k .
text S
random
session key encrypted
session key
ko

Ks
K1

Digital Signatures have many
uses...

E-commerce. An instruction to your bank to
transfer money can be authenticated with a
digital signature.

® [egislative regimes are slow to catch up

A trusted third party can issue declarations
such as "the holder of this key is a person
who is legally known as Alice Hacker"

® |ike a passport binds your identity to your face

® Such a declaration is called a "certificate"

@ You only need the third-party's public key to

check the signature

37

39

41

Public key cryptosystems require
a lot of computation

® So we use some tricks to minimise the
amount of data which is encrypted

When authenticating:

® Take a hash of the document and encrypt
only that. An encrypted hash is called a
"digital signature"

. hash t&sh .
COMPARE

digital

signature

ko K1

Where can you apply these
cryptgraphic methods?

® Atthe link layer
® PPP encryption

® At the network layer
® |PSEC

® At the transport layer
® TLS (SSL)

® At the application layer
® SSH, PGP/GPG

