Internet Exchange Point Design

ISP/IXP Workshops
IXP Design

- Layer 2 Exchange Point
- Layer 3 Exchange Point
- Transit Exchange Point
- Design Considerations
Internet Exchange Points

- Layer 2 exchange point
 ethernet, ATM or Frame Relay switch
- Layer 3 exchange point
 router based
 central or distributed
Layer 2 Exchange

The traditional IXP
Layer 2 Exchange

ISP 1

ISP 2

ISP 3

ISP 4

ISP 5

ISP 6

Ethernet Switch

IXP Management Network

IXP Services:
TLD DNS, Routing Registry, Looking Glass, news, etc
Layer 2 Exchange

IXP Services:
- TLD DNS,
- Routing Registry
- Looking Glass,
- news, etc.

Ethernet Switches

ISP 1
ISP 2
ISP 3
ISP 4
ISP 5
ISP 6

IXP Management Network
Layer 2 Exchange

- Two switches for redundancy
- ISPs use dual routers for redundancy or loadsharing
- Offer services for the “common good”
 - Internet portals and search engines
 - DNS TLD, News, NTP servers
 - Routing Registry and Looking Glass
Layer 2 Exchange

• Requires neutral IXP management
 usually funded equally by IXP participants
 24x7 cover, support, value add services

• Secure and neutral location

• Configuration
 private address space if non-transit and no value add services
 ISPs require AS, basic IXP does not
Layer 2 Exchange

• Network Security Considerations

 LAN switch needs to be securely configured

 Management routers require TACACS+ authentication, vty security

 IXP services must be behind router(s) with strong filters
Layer 3 Exchange

The wholesale transit ISP
Layer 3 Exchange

IXP Services:
- TLD DNS,
- Routing Registry
- Looking Glass,
- news, etc

IXP Router

ISP 1

ISP 2

ISP 3

ISP 4

ISP 5

ISP 6

IXP Management Network
Layer 3 Exchange

IXP Services:
- TLD DNS,
- Routing Registry
- Looking Glass,
- news, etc

IXP Routers

ISP 1
ISP 2
ISP 3
ISP 4
ISP 5
ISP 6

IXP Management Network
Layer 3 Exchange

- Two routers for redundancy
- ISPs use dual routers for redundancy or loadsharing
- Offer services for the “common good”
 - Internet portals and search engines
 - DNS TLD, News, NTP servers
 - Routing Registry and Looking Glass
Layer 3 Exchange

- Requires neutral IXP management
 usually funded equally by IXP participants
 24x7 cover, support, value add services
 BGP configuration skills essential

- Secure and neutral location

- Configuration
 private address space if non-transit and no value add services
 ISPs and IXP require AS
Layer 3 Exchange

• Network Security Considerations

Core IXP router(s) require strong security, preferably with BGP neighbour authentication

Management routers require TACACS+ authentication, vty security

IXP services must be behind router(s) with strong filters
Layer 2 versus Layer 3

• Layer 3
 IXP team requires good BGP knowledge
 Rely on 3rd party for BGP configuration
 Less freedom on who peers with whom
 Could potentially compete with IXP membership
 Easier to distribute over wide area
Layer 2 versus Layer 3

• **Layer 2**

 IXP team does not need routing knowledge

 Easy to get started

 More complicated to distribute over wide area

 ISPs free to set up peering agreements with each other as they wish
Transit Exchanges
Transit IXPs

- Provides local Internet exchange facility to members
- Also provides transit to Internet or upstream ISP
- Usually operated as a commercial service
- Usually layer 3 design
Layer 3 Transit Exchange

- ISP 1
- ISP 2
- ISP 3
- ISP 4
- ISP 5
- Transit Routers

IXP Routers

IXP Services:
- TLD DNS,
- Routing Registry
- Looking Glass,
- news, etc

Internet

IXP Management Network

ISP
IXP Design Considerations
Routing and Address Space

- ISP border routers should not be configured with default route or carry full Internet routing table
- Use private addresses if possible – public address space means IXP network could be leaked to Internet which may be undesirable
Hardware

• Don’t mix port speeds
 if 10Mbps and 100Mbps connections available, terminate on different switches (L2 IXP)

• Don’t mix transports
 if terminating ATM PVCs and G/F/Ethernet, terminate on different devices

• Insist that IXP participants bring their own router
 moves buffering problem off the IXP
 security is responsibility of the ISP, not the IXP
Services Offered

• Services offered should not compete with member ISPs (basic IXP)
 e.g. web hosting at an IXP is a bad idea unless all members agree to it

• IXP operations should make performance and throughput statistics available to members
Services to Offer

• **TLD DNS**
 the country IXP could host the country’s top level DNS
 e.g. “UK.” TLD is hosted at LINX in London

• **Usenet News**
 Usenet News is high volume
 could save bandwidth to all IXP members
Services to Offer

• Route Collector
 All IXP members peer with the route collector
 Route collector shows the reachability information available at the exchange
 Requires a simple router with large memory

• Looking Glass
 One way of making the Route Collector routes available for global view
 Public or members only access
Services to Offer
Route Server

- Reduces admin burden on IXP member routers
 only BGP session is with Route Server
 Route Server supplies all paths it knows to the IXP member routers – no best path selection
- Can use private AS
 Route Server software does not prepend its AS to the AS path
- RSd (from Merit Network) commonly used
Services to Offer

- **Network Time Protocol**
 Locate a stratum 1 time source (GPS receiver, atomic clock, etc) at IXP

- **Multicast**
 Provide MBONE and other multicast services for the common good
Services to Offer
Routing Registry

- Routing Registry is used to register the routing policy of the IXP membership
documenting peering relationships
auto-configuring of peer routers
- Alternative is to use the public Internet Routing Registry (IRR)
IXP Design

Summary
Summary

• L2 IXP – most commonly deployed
typically based around ethernet or ATM switches

• L3 IXP – nowadays generally a marketing concept used by wholesale ISPs
doesn’t offer the same flexibility as L2
Internet Exchange Point Design

ISP/IXP Workshops