

Problem:

- Hard BGP peer reset required after every policy change because the router does not store prefixes that are rejected by policy
- Hard BGP peer reset:
- Consumes CPU

Severely disrupts connectivity for all networks

Solution:

Route Refresh

Route Refresh Capability

- Facilitates non-disruptive policy changes
- No configuration is needed
- No additional memory is used
- Requires peering routers to support "route refresh capability" – RFC2918
- clear ip bgp x.x.x.x in tells peer to resend full BGP announcement
- clear ip bgp x.x.x.x out resends full BGP
 announcement to peer

Peer Groups

Cass.com

- Problem how to scale iBGP Large iBGP mesh slow to build
 iBGP neighbours receive the same update Router CPU wasted on repeat calculations
- Solution peer-groups
 Group peers with the same outbound policy
 Updates are generated once per group

Peer Groups – Advantages

- Makes configuration easier
- Makes configuration less prone to error
- Makes configuration more readable
- Lower router CPU load
- iBGP mesh builds more quickly
- Members can have different inbound policy
- Can be used for eBGP neighbours too!

Configuring a Peer Group

router bgp 100
neighbor ibgp-peer peer-group
neighbor ibgp-peer remote-as 100
neighbor ibgp-peer update-source loopback 0
neighbor ibgp-peer send-community
neighbor ibgp-peer route-map outfilter out
neighbor 1.1.1.1 peer-group ibgp-peer
neighbor 2.2.2.2 peer-group ibgp-peer
neighbor 2.2.2.2 route-map infilter in
neighbor 3.3.3.3 peer-group ibgp-peer
! note how 2.2.2.2 has different inbound filter from peer-group !

Configuring a Peer Group
Capa.com
router bgp 100
neighbor external-peer send-community
neighbor external-peer route-map set-metric out
neighbor 160.89.1.2 remote-as 200
neighbor 160.89.1.2 peer-group external-peer
neighbor 160.89.1.4 remote-as 300
neighbor 160.89.1.4 peer-group external-peer
neighbor 160.89.1.6 remote-as 400
neighbor 160.89.1.6 peer-group external-peer
neighbor 160.89.1.6 filter-list infilter in

Peer Groups

- Always configure peer-groups for iBGP Even if there are only a few iBGP peers Easier to scale network in the future
- Consider using peer-groups for eBGP Especially useful for multiple BGP customers using same AS (RFC2270)
 Also useful at Exchange Points where ISP policy is generally the same to each peer

Route Flap Damping

Caou.c

Route flap

Going up and down of path or change in attribute BGP WITHDRAW followed by UPDATE = 1 flap eBGP neighbour going down/up is NOT a flap Ripples through the entire Internet Wastes CPU

 Damping aims to reduce scope of route flap propagation

Route Flap Damping (continued)

Requirements

Fast convergence for normal route changes History predicts future behaviour Suppress oscillating routes Advertise stable routes

• Implementation described in RFC 2439

Operation

- Add penalty (1000) for each flap Change in attribute gets penalty of 500
- Exponentially decay penalty half life determines decay rate
- Penalty above suppress-limit
 do not advertise route to BGP peers
- Penalty decayed below reuse-limit re-advertise route to BGP peers penalty reset to zero when it is half of reuse-limit

Operation

 Only applied to inbound announcements from eBGP peers

- Alternate paths still usable
- · Controlled by:
 - Half-life (default 15 minutes)
 - reuse-limit (default 750)
 - suppress-limit (default 2000)
 - maximum suppress time (default 60 minutes)

Configuration

Fixed damping

router bgp 100
bgp dampening [<half-life> <reuse-value> <suppresspenalty> <maximum suppress time>]

Selective and variable damping

- bgp dampening [route-map <name>]
- route-map <name> permit 10
- match ip address prefix-list FLAP-LIST
- set dampening [<half-life> <reuse-value> <suppresspenalty> <maximum suppress time>]
- ip prefix-list FLAP-LIST permit 192.0.2.0/24 le 32

Operation

- Care required when setting parameters
- Penalty must be less than reuse-limit at the maximum suppress time
- Maximum suppress time and half life must allow penalty to be larger than suppress limit

- Divide the backbone into multiple clusters
- At least one route reflector and few clients per cluster
- Route reflectors are fully meshed
- Clients in a cluster could be fully meshed
- Single IGP to carry next hop and local routes

- Originator_ID attribute Carries the RID of the originator of the route in the local AS (created by the RR)
- Cluster_list attribute The local cluster -id is added when the update is sent by the RR Cluster -id is router -id (address of loopback)
 - Do NOT use bgp cluster -id x.x.x.x

Route Reflectors: Redundancy

- Multiple RRs can be configured in the same cluster – not advised!
 All RRsin the cluster must have the same cluster -id (otherwise it is a different cluster)
- A router may be a client of RRs in different clusters
 Common today in ISP networks to overlay two clusters – redundancy achieved that way

 Beach client has two RRs = redundancy


```
router bgp 100
neighbor 1.1.1.1 remote-as 100
neighbor 1.1.1.1 route-reflector-client
neighbor 2.2.2.2 remote-as 100
neighbor 3.3.3.3 remote-as 100
neighbor 3.3.3.3 route-reflector-client
```


Confederations: Loop Avoidance

- Sub-AS traversed are carried as part of AS-path
- AS-sequence and AS path length
- Confederation boundary
- AS-sequence should be skipped during MED comparison

Route Propagation Decisions

• Same as with "normal" BGP:

From peer in same sub-AS \rightarrow only to external peers

From external peers \rightarrow to all neighbors

"External peers" refers to
 Peers outside the confederation
 Peers in a different sub-AS
 Preserve LOCAL_PREF, MED and NEXT_HOP

Confederatio	ons (cont	.)			Caco.	com
Example (co	nt.):					
BGP table vers	ion is 78, lo	cal rout	ter ID :	is 141.1	153.17.1	
Status codes: best, i - inter	s suppressed, mal	d dampe	ed, h h	istory,	* valid	, >
Origin codes: :	i - IGP, e - 1	EGP, ? -	- incom	plete		
Network	Next Hop	Metric	LocPrf	Weight	Path	
*> 10.0.0.0	141.153.14.3	0	100	0	(65531)	1 i
*> 141.153.0.0	141.153.30.2	0	100	0	(65530)	i
*> 144.10.0.0	141.153.12.1	0	100	0	(65530)	i
*> 199.10.10.0	141.153.29.2	0	100	0	(65530)	1 i

More points about confederations

- Can ease "absorbing" other ISPs into you ISP – e.g., if one ISP buys another (can use localas feature to do a similar thing)
- You can use route -reflectors with confederation sub-AS to reduce the sub-AS iBGP mesh

Confederations: Benefits

- Solves iBGP mesh problem
- Packet forwarding not affected
- Can be used with route reflectors
- Policies could be applied to route traffic between sub-AS's

Confederations: Caveats

- Minimal number of sub-AS
- Sub-AS hierarchy
- Minimal inter-connectivity between sub-AS's

Casol ca

- Path diversity
- Difficult migration
 BGP reconfigured into sub-AS
 must be applied across the network

<section-header> Image: Section of the section of t

