
Cryptographic methods:

Recommended reading:
Applied Cryptography, Bruce Schneier

PacNOG I Workshop

Presented by
Hervey Allen

Materials originally by
Brian Candler

� Can offer genuinely secure solutions to
important security problems

� Some governments forbid it

� Confidentiality

� Can I be sure no-one else can see my data?
(e.g. sniffing)

� Integrity

� Has my data been modified?

� Authentication

Why use cryptography?

1. "Private key" or "symmetric"
ciphers

clear
text

clear
textk k

cipher
text

The same key is used to encrypt the document
before sending and decrypt it at the far end

We assume an eavesdropper is
able to intercept the ciphertext

� How can they recover the cleartext?

Examples of symmetric ciphers

� DES - 56 bit key length, designed by US
security service

� 3DES - effective key length 112 bits

� AES (Advanced Encryption Standard) - 128
to 256 bit key length

� Blowfish - 128 bits, optimised for fast
operation on 32-bit microprocessors

� IDEA - 128 bits, patented (requires a
licence for commercial use)

Features of symmetric ciphers

� Fast to encrypt and decrypt, suitable for
large volumes of data

� A well-designed cipher is only subject to
brute-force attack; the strength is
therefore directly related to the key length

� Current recommendation is a key length
of at least 90 bits

� i.e. to be fairly sure that your data will be safe
for at least 20 years

� http://www.schneier.com/paper-keylength.html

� Problem - how do you distribute the keys?

2. "Hashing" - one-way
encryption

clear
text

Munging the document gives a short
"message digest" (checksum). Not possible to go

back from the digest to the original document.

Fixed length "hash"
or "message digest"

hashing
function

Examples

� Unix crypt() function, based on DES

� MD5 (Message Digest 5) - 128 bit hash

� SHA1 (Secure Hash Algorithm) - 160 bits

� Collisions have been found for SHA1/MD5. Some
discussions here:
http://en.wikipedia.org/wiki/SHA-1
http://www.cits.rub.de/MD5Collisions/
http://www.schneier.com/blog/archives/2005/03/more_hash_funct.html

� Almost no two documents have been discovered
which have the same MD5 digest

� So far, no feasible method to create any document
which has a given MD5 digest

So what use is that?
a. Integrity checks

� You can run many megabytes of data
through MD5 and still get only 128 bits to
check

� It is difficult for an attacker to modify your
file and leave it with the same MD5
checksum

� Gives your document an almost unique
"fingerprint"

Exercise

� Exercise: on your machine type

� cat /etc/motd

� Look at your neighbour's machine. Is their
file exactly the same as yours? Can you be
sure?

� md5sum /etc/motd

� Compare the result with your neighbour

� Now change ONE character in /etc/motd
and repeat the md5sum test

Software announcements often
contain an MD5 checksum

� It's trivial to check

� Protects you against hacked FTP servers
and download errors

$ md5 exim-4.50_1.tbz
MD5 (exi m- 4. 50_1. t bz) = 1884ca8e48536a087b86c279de5c9e69
$

Two Considerations:
1. Could the attacker have modified the original email
announcment?
2. You need to keep the md5sum file on a separate server
from the software being downloaded.

So what use is that?
b. Encrypted password storage

� We don't want to keep cleartext passwords if
possible; the password file would be far too
attractive a target

� Store hash(passwd) in /etc/master.passwd
(shadow password in Linux)

� When user logs in, calculate the hash of the
password they have given, and compare it to the
hash in the password file

� If the two hashes match, the user must have
entered the correct password

� Can an attacker still recover the password?

So what use is that?
c. Generating encryption keys

� Users cannot remember 128 bit binary encryption
keys

� However they can remember "passphrases"

� A hash can be used to convert a passphrase into a
fixed-length encryption key

� The longer the passphrase, the more
"randomness" it contains and the harder to guess.
English text is typically only 1.3 bits of
randomness per character.

http://www.cranfield.ac.uk/docs/email/pgp/pgp-attack-faq.txt

http://www.schneier.com/paper-personal-entropy.html

Generating encryption keys
for symmetric ciphers

Passphrase
entered by

user

128-bit
keyMD5

hash

Every passphrase generates a
different 128-bit key

Example:
GPG with symmetric cipher

vi foobar.txt
gpg -c foobar.txt
Ent er passphr ase: ding/dong 479 fruitbat
Repeat passphr ase: ding/dong 479 fruitbat
ls foobar.txt*
f oobar . t xt f oobar . t xt . gpg
rm foobar.txt
r m: r emove r egul ar f i l e ` f oobar . t xt ' ? y

gpg foobar.txt.gpg
gpg: CAST5 encr ypt ed dat a
Ent er passphr ase: ding/dong 479 fruitbat
cat foobar.txt

("gpg --version" shows the ciphers available)

3. "Public key" ciphers

clear
text

clear
textk1

(public key)

(public key)

k2

(private key)

(private key)

cipher
text

One key is used to encrypt the document,
a different key is used to decrypt it

Public key and Private key

� The Public key and Private key are
mathematically related (generated as a pair)

� It is easy to convert the Private key into the
Public key. It is not easy to do the reverse.

� Key distribution problem is solved: you can
post your public key anywhere. People can
use it to encrypt messages to you, but only
the holder of the private key can decrypt
them.

� Examples: RSA, Elgamal (DSA)

Use for authentication:
reverse the roles of the keys

clear
text

clear
textk2

(private key)

k1

(public key)

cipher
text

If you can decrypt the document with the
public key, it proves it was written by the

owner of the private key (and was not changed)

Key lengths

� Attacks on public key systems involve
mathematical attempts to convert the
public key into the private key. This is more
efficient than brute force.

� 512-bit has been broken

� Recent developments suggest that 1024-bit
keys might not be secure for long

� Recommend using 2048-bit keys*
*http://www.rsasecurity.com/rsalabs/node.asp?id=2218

Protecting the private key*

� The security of the private key is paramount:
keep it safe!

� Keep it on a floppy or a smartcard?

� Prefer to keep it encrypted if on a hard drive

� That means you have to decrypt it (using a
passphrase) each time you use it

� An attacker would need to steal the file
containing the private key, AND know or
guess the passphrase.

*Some disagree with this notion...

Protecting the private key

k2

(encrypted
on disk)

Passphrase
entered by

user

k2

ready
for use

hash

symmetric
cipher

key

Public key cryptosystems are
important

� But they require a lot of computation
(expensive in CPU time)

� So we use some tricks to minimise the
amount of data which is encrypted

When encrypting:

� Use a symmetric cipher with a random key
(the "session key"). Use a public key cipher
to encrypt the session key and send it along
with the encrypted document.

k1 k2

encrypted
session key

cipher
text

random
session key

ks

s

ks

s

(private)(public)

When authenticating:

� Take a hash of the document and encrypt
only that. An encrypted hash is called a
"digital signature"

k2 k1

digital
signature

COMPARE

hash hash

(public)(private)

Digital Signatures have many
uses, for example:

� E-commerce. An instruction to your bank
to transfer money can be authenticated
with a digital signature.

� Legislative regimes are slow to catch up

� A trusted third party can issue declarations
such as "the holder of this key is a person
who is legally known as Alice Hacker"

� like a passport binds your identity to your face

� Such a declaration is called a "certificate"

� You only need the third-party's public key
to check the signature

Do public keys really solve the
key distribution problem?

� Often we want to communicate securely
with a remote party whose key we don't
know

� We can retrieve their public key over the
network

� But what if there's someone in between
intercepting our traffic?

public key

The "man in the middle" attack

� Passive sniffing is no problem

� But if they can modify packets, they can
substitute a different key

� The attacker uses separate encryption keys
to talk to both sides

� You think your traffic is secure, but it isn't!

key 1 key 2

Attacker sees all traffic in plain text
- and can modify it!

Digital Certificates can solve the
man-in-the-middle problem

� Problem: I have no prior knowledge of the
remote side's key

� But someone I trust can check who they
are

� The trusted third party can vouch for the
remote side by signing a certificate which
contains the remote side's name and
public key

� I can check the validity of the certificate
using the trusted third party's public key

Example: TLS (SSL) web server
with digital certificate

� I generate a private key on my webserver

� I send my public key plus my identity (my
webserver's domain name) to a certificate
authority (CA)

� The CA manually checks that I am who I say I am,
i.e. I own the domain

� They sign a certificate containing my public key,
my domain name, and an expiration date (Q: why
is an expiration date included?)

� I install the certificate on my web server

When a client's web browser
connects to me with HTTPS:

� They negotiate an encrypted session with
me, during which they learn my public key

� I send them the certificate

� They verify the certificate using the CA's
public key, which is built-in to the browser

� If the signature is valid, the domain name
in the URL matches the domain name in
the certificate, and the expiration date has
not passed, they know the connection is
secure

The security of TLS depends on:

� Your webserver being secure

� So nobody else can obtain your private key

� The CA's public key being in all browsers

� The CA being well managed

� How carefully do they look after their own
private keys?

� The CA being trustworthy

� Do they vet all certificate requests properly?

� Could a hacker persuade the CA to sign their
key pretending to be someone else? What
about a government?

PGP takes a different view

� We don't trust anyone except our friends
(especially not big corporate monopolies)

� You sign your friends' keys to vouch for
them

� Other people can choose to trust your
signature as much as they trust you

� Generates a distributed "web of trust"

� Sign someone's key when you meet them
face to face - "PGP key signing parties"

SSH uses a simple solution to
man-in-the-middle

� The first time you connect to a remote host,
remember its public key

� Stored in ~/.ssh/known_hosts

� The next time you connect, if the remote
key is different, then maybe an attacker is
intercepting the connection!

� Or maybe the remote host has just got a new key,
e.g. after a reinstall. But it's up to you to resolve
the problem

� Relies on there being no attack in progress
the first time you connect to a machine

SSH can eliminate passwords

� Use public-key cryptography to prove
who you are

� Generate a public/private key pair locally

� ssh-keygen -t dsa

� Private key is ~/.ssh/id_dsa

� Public key is ~/.ssh/id_dsa.pub

� Install your PUBLIC key on remote hosts

� mkdir .ssh

� chmod 755 .ssh

� Copy public key into ~/.ssh/authorized_keys

� Login!

Notes on SSH authentication

� Private key is protected by a passphrase

� So you have to give it each time you log in

� Or use "ssh-agent" which holds a copy of your
passphrase in RAM

� No need to change passwords across
dozens of machines

� Disable passwords entirely!

� /etc/ssh/sshd_config

� Annoyingly, for historical reasons there are
three different types of SSH keys

� SSH1 RSA*, SSH2 DSA, SSH2 RSA (*largely gone)

Designing a good cryptosystem is
very difficult

� Many possible weaknesses and types of
attack, often not obvious

� DON'T design your own!

� DO use expertly-designed cryptosystems
which have been subject to widespread
scrutiny

� Understand how they work and where
the potential weaknesses are

� Remember the other weaknesses in your
systems, especially the human ones

Where can you apply these
cryptographic methods?

� At the link layer

� PPP encryption

� At the network layer

� IPSEC

� At the transport layer

� TLS (SSL): many applications support it

� At the application layer

� SSH: system administration, file transfers

� PGP/GPG: for securing E-mail messages, stand-
alone documents, software packages etc.

� Tripwire (and others): system integrity checks

Some Resources

Some interesting web links for further
reading:

� Crypto FAQ from RSA Security
http://www.rsasecurity.com/rsalabs/node.asp?id=2152

� Cryptography resources from Schneier.com
http://www.schneier.com/resources.html

� Wikipedia SHA-1 collision discussion
http://en.wikipedia.org/wiki/SHA-1

