Security with SSH

SANQG VI IP Services Workshop

Hervey Allen

Topics

* Where to get SSH (Secure SHell)

* How to enable and configure SSH

* Where to get SSH clients for Windows

* Authentication of the server to the client
(host keys)

* [ssues to do with changing of the host key

 Password authentication of the client to the
server

* Cryptographic authentication of the client to
the server (rsa/dsa keys)

* hostkey exchange, scp, and sftp labs

Cryptographic Methods and Apps

Previously we had mentioned the following
practical applications apply to the following
methods:

* At the link layer PPP encryption
e At the network layer IPSEC

* At the transport layer TLS (SSL)

* At the application layer SSH, PGP/GPG

SSH Application Layer Security

In this section we will go over SSH at the
application layer to do both authentication
and data encryption.

We are going to largely ignore SSH Version 1
issues with RSA 1 Keys as RSA1 and SSH
version 1 and 1.5 are no longer secure.

Main Security Concerns
SSH applies directly to dealing with these two areas
of security:

*Confidentiality
* Keeping our data safe from prying eyes

*Authentication and Authorization
* [s this person who they claim to be?

Enable and Configure OpenSSH

On our machines this is already done, but if you did

somehing like:
[usr/ports/security/ openssh-portabl e/ make install

¢ You should make sure that /etc/rc.confis set:
sshd_enabl e=" YES”

» Take a look at /etc/ssh/ssh_config and /etc/sshd_config.

In sshd_config you might be interested in:
Perm t Root Logi n yes/ no (you general ly want “no”)
and in /etc/ssh/ssh_config (this could cause problems):

Protocol 1,2 (you only want “2")

There are many options in ssh_config and sshd_config. You should read
through these files to verify they meet your expecations.

Where to Get SSH

First see if SSH is installed on your system and what
version. Easiest way is:

ssh -V

If you want or need an updated version of OpenSSH
((iurrent version is 4.1) you can go to the following
places:

/usr/ports/security/openssh-portable/
http://www.openssh.org/
http://www.ssh.com/

We recommend using OpenSSH for FreeBSD.
Default version installed in FreeBSD 5.4 is OpenSSH
Portable version 3.8.1p1

Where to Get SSH Clients for Windows

There are several free, shareware, and commercial ssh
clients for Windows:

See http://www.openssh.org/windows.html for a list.

A few that support protocol version 2 include:
e Putty: http://www.chiark.greenend.org.uk/~sgtatham/putty/
* OpenSSH for Windows (using Cygwin):
http://www.cygwin.com/
http://sshwindows.sourceforge.net/

* Secure Shell from ssh.com (free for personal use):

http://www.ssh.com/products/ssh/download.cfm

And WRQ at http://www.wrq.com/products/reflection/ssh/ is a nice
product if you are willing to pay.

Some Useful SSH References

* If you want a great SSH RSA/DSA key overview Daniel
Robbins ex-CEO of gentoo.org has written a 3-part
series hosted on the IBM Developer Works pages.

* The three papers and URL's are:

OpenSSH Key Management, Part 1
http://www-106.ibm.com/developerworks/library/l-keyc.html
OpenSSH Key Management, Part 2
http://www-106.ibm.com/developerworks/library/l-keyc2/
OpenSSH Key Management, Part 3
http://www-106.ibm.com/developerworks/library/l-keyc3/

More SSH References

For a comparison of SSH Version 1 and 2 see:

http://www.snailbook.com/faq/ssh-1-vs-2.auto.html
An excellent book on SSH is:

SSH, The Secure Shell
The Definitive Guide,
Second Edition.

By Daniel J. Barrett,
Richard Silverman, &
Robert G. Byrnes
May 2005

ISBN: 0-596-00895-3

SSH Connection Methods

Several things can happen when using SSH to
connect from your machine (client) to another
machine (server):

* Server's public host key is passed back to the client
and verified against known_hosts

* Password prompt is used if public key is accepted,
or already on client, or

* RSA/DSA key exchange takes place and you must
enter in your private key passphrase to
authenticate (assuming you have one).

SSH Quick Tips

You have a choice of authentication keys - RSA
is the default (dsa is fine as well).

The files you care about are:

/ etc/ssh/ssh_confi§
/etc/ssh/sshd_con cllg

~/.ssh/id_dsa and id_dsa.pub

~/.ssh/id_rsa and id_rsa.pub

~/.ssh/known_hosts

~/.ssh/authorized_keys

And, note the rsa/dsa host-wide key files in /etc/ssh

Be sure that you do “man ssh” and “man sshd”
and read the entire descriptions for both the
ssh client and ssh server (sshd).

SSH Authentication

Private key can be protected by a [fassphrase
So you have to give it each time you log in
Or use "ssh-agent" which holds a copy of your
passphrase in RAM

No need to change passwords across dozens of
machines

Disable passwords entirely!

/ etc/ssh/ssh_config
Passwor dAut hent i cat ion yes

Annoymgléf for historical reasons there are
three different types of SSH keys
SSH1 RSA, SSH2 DSA SSH2 RSA

Exchanging Host Keys

First time connecting with ssh:

ssh usernanme@cl. ws. sanog. or g. bt

The authenticity of host 'pcl.ws.sanog.org.bt (202.144.151.1)"' can't be
establ i shed.

DSA key fingerprint is 91:ba: bf:e4:36:cd: e3: 9e: 8e: 92: 26: e4: 57: c4: ch: da.
Are you sure you want to continue connecting (yes/no)? yes

Warni ng: Permanent|y added ' pcl.ws.sanog.org.bt, 202.144.151.1" (DSA) to
the list of known hosts.

user nane@ocl. ws. sanog. org. bt's password:

At this point the client has in the file ~/.ssh/known_hosts the
contents of pcl.ws.sanog.org.bt's /etc/ssh/ssh_host_dsa_key.pub.

Next connection:

[hal len@al l en-1t .ssh]$ ssh usrnane@cl. ws. sanog. or g. bt
user nane@ocl. ws. sanog. org. bt's password:

Now trusted - Not necessarily a good thing...

Man in the Middle Attacks

The first time you connect to a remote host,
remember its public key
Stored in ~/.ssh/known_hosts

The next time you connect, if the remote key is
different, then maybe an attacker is
intercepting the connection!

Or maybe the remote host has just got a new
key, e.g. after a reinstall. But it's up to you to
resolve the problem

You will be warned if the key changes.

Exchanging Host Keys Cont.

Command Key Type Generated Public File

ssh-keygen -trsa RSA (SSH protocol 2) id_rsa.pub
ssh-keygen -tdsa DSA (SSH protocol 2) id_dsa.pub

- Default key size is 1024 bits

- Public files are text

- Private files are encrypted if you use a
passphrase (still text)

Corresponding file on the host for host key
exchange is “known_hosts”.

Exchanging Host Keys Cont.

How does SSH decide what files to compare?

Look in /etc/ssh/sshd_config. For OpenSSH
version 3 the server defaults to protocol 2.

By default OpenSSH version 2 client connects

in this order:
RSA version 2 key
DSA version 2 key
Password based authentication (even if RSA
version 1 key is present)

Pay attention to the “HostKeyAlgorithms” settinf in /etc/ssh/ssh_config to
help determine this order - or use ssh command line switches to override
these settings.

SSH - “Magic Phrase”

Basic concept to understand how an SSH connection is
made using RSA/DSA key combination:

Client X contacts server Y via port 22.

Y generates a random number and encrypts this
using X's public key. X's public key must reside on
Y. You can use scp to copy this over.

Encrypted random number is sent back to X.

X decrypts the random number using it's private
key and sends it back to Y.

If the decrypted number matches the original
encrypted number, then a connection is made.
The originally encrypted random number sent
from Y to X is the “Magic Phrase”

We'll try drawing this as well...

SSH - Lab

We will now practice the following

COHCCptS:

- The use of known_hosts files

- SSH connection with password authentication

- RSA version 2 protocol key generation

- Public key copying

- Connecting with private key passphrase using
key-based authentication

- Using scp with RSA key authentication

- Some ssh “hacks” without passwords.

*Technically you are still challenged (even if that is a bad pun in English).

SSH - Lab Cont.

The use of known_hosts files

Connect to the machine next to your machine using ssh:

ssh adm n@cN. ws. sanog. or g. bt

If this is your first connection to this machine you should
see (example uses hostl connecting to host2):

pcl# ssh adm n@c2. ws. sanog. org. bt

The authenticity of host 'pc2.ws.sanog.org.bt (202.144.151.2)' can't be
establ i shed.

RSAl1 key fingerprint is 60:f7:04:8b:f7:61: c4: 41: 6e: 9a: 6f: 53: 7d: 95: cb: 29.
Are you sure you want to continue connecting (yes/no)?

Go ahead and answer “yes” here, but we'll discuss the
implications of this in class. Are there ways around this?
Could this be a “man in the middle” attack? What file is
created or updated? Why?

SSH - Lab Cont.

ssh connection with password authentication

At the prompt below when you answered yes, you were asked
to enter in the admin password for pc2.ws.sanog.org.bt:

host 1# ssh adm n@c2. ws. sanog. or g. bt

The authenticity of host 'pc2.ws.sanog.org.bt (202.144.151.2)"' can't be
est abl i shed.

RSA2 key fingerprint is 60:f7:04:8b:f7:61:c4:41: 6e: 9a: 6f: 53: 7d: 95: ch: 29.
Are you sure you want to continue connecting (yes/no)? yes

And, this is what you should have seen:
War ni ng: Permanent|y added ' pc2. ws. sanog.org.bt' (RSA2) to the list of known
hosts. [/ etcl/sshl ssh_host _key. pub]
adm n@-c2. ws. sanog. org. bt's password:

Now you are “securely” connected as admin to
ch.ws.sanog.org. t - We will discuss what happened
uring this connection.

SSH - Lab Cont.

rsal/rsa2/dsa Key Generation

We will now generate a single RSA SSH protocol 2 key of 2048
bits. To do this, issue the following command. If you are
logged in on the other machine, logout first!

Before continuing: you may need to edit /etc/ssh/ssh_config
and make sure that the “Protocol” option is set either to
“Protocol 2,1” or “Protocol 2”

ssh-keygen -t rsa -b 2048

You will be prompted for a file location for the key as well as
for a passphrase to encrypt the key file. Be sure to enter a
passphrase. Private key files without passphrases are a
security hole, or maybe not... We'll discuss this as we
complete this excercise. You can use a passphrase other
tharﬁ what was given in class for the admin account if you
wish.

SSH - Lab Cont.
RSA 2 Key Generation

Here is the output from the command

“ssh-keygen -trsa -b 2048”:

pcl# ssh-keygen -t rsa -b 2048

Generating public/private rsa key pair.

Enter file in which to save the key

(/adm n/.ssh/id_rsa): [enter]

Ent er passphrase (enpty for no passphrase): [pw

Enter sane passphrase again: [pw]

Your identification has been saved in /

admi n/ .ssh/id_rsa.

Your public key has been saved in /

admi n/ . ssh/id_rsa. pub.

The key fingerprint is:

Of : f5: b3: be: f 7: 5b: ¢8: ce: 79: dO: bl: ab: 2c: 67: 21: 62

adm n@c1l. ws. sanog. or g. bt

pcl#

SSH - Lab Cont.
Public Key Copying

Now that you have a public and private RSA(2) set of keys you
can take advantage of them. We will copy the publickey to
the same host you connected to previously, save this to the
files known_hosts, and then reconnect to the host and see
the difference:

First you must copy the public key files to the host you used
previously (pcn.ws.sanog.org.bt):

cd ~/.ssh
scp i d_rsa.pub adm n@cn.ws. sanog. org. bt:/tnp/.

You will be prompted for the password for the host and
username you are connecting to. We continue with our
example using pcl connecting to pc2 as admin.

SSH - Lab Cont.
Public Key Copying

The output from the command on the previous page looks like:

pcl# scp *. pub adm n@c2.ws. sanog. org. bt:/tnp/
adm n@c2. ws. sanog. org. bt's password
i d_rsa. pub 100G | * %% %% %% % k% Kk K% kK% KKK A KA KK | 408 00: 00

pcl#
You now have the public key file sitting on the host that will
need them to use RSA/DSA public/private key authentication

with you. You next step is to place these keys in the
appropriate files.

You need the RSA keys in ~/.ssh/authorized_keys

You can try to figure this out, or go to the next slide for steps
to do this:

SSH - Lab Cont.

Public/Private Key Connection

To connect using your RSA protocol 2 key simply type:

ssh adm n@cn. ws. sanog. or g. bt

And, here is the output you should see (pcl to pc2 example):

host 1# ssh adm n@)cz. Ws. sanog. or g. bt
Enter passphrase for RSA key 'adnm n@-cl. ws.sanog.org. bt':

This is actually pretty neat! You did not enter in the admin
assword for the admin account on pcn.ws.sanog.org.bt,
ut rather Xou used the passphrase that you chose for your
private RSA protocol 2 key when you issued the command
ssh-keygen -t rsa -b 2048” - This was used to decode the encoded
random number exchanged between the hosts (remember
“Magic Phrase?”).

Why was the RSA protocol 2 key used? We'll discuss this in class.

SSH - Lab Cont.
Public Key Copying
To copy the public keys to the correct places do the following:

ssh adm n@cn. ws. sanog. or g. bt

cat /tnp/id_rsa. pub >> ~/.ssh/authorized_keys
rm/tnp/id_rsa.pub

exit

If you are unsure of what these commands do they will they
are explained in class. In addition, you can do this many
different ways, and you could issue the commands
differently as well. If you understand what these commands
do and have a preferred method, then feel free to use it.

Go to the next slide to connect with your public/private keys!

SSH - Lab Cont.

SCP Public/Private Key Connection

First disconnect from the ssh session you previously made:
exit

Now, trﬁcopyin afile from your machine to the other
machine (pick a small file) using SCP (SeCure coPy):

scp filenane adm n@cn. ws. sanog.org. bt:/tnp/.

What did you notice? You should have noticed that you no
longer get a password challenge to this account on this
node, but rather you need to provide your RSA protocol 2
private key passphrase.

This is expected. SCP and SSH are from the same lil)ackage -
OpenSSH and both use RSA and DSA keys in the same way.

SSH - Lab Cont. SSH - Lab Cont.

Another SSH tool - SFTP Now let's use the power of scp
In addition to scp, ssh has a secure ftp tool called sftp. Multiple file and directory copy:
Giveitatry:

Let's co/py all the files and directories in
Let's use sftp to get your neighbor's /etc/motd file [usr %orts/ palm from your machine to your
and place it in your /tmp directory. neighbor's machine using one command (1.4Mb):

sftp adm n@cN. ws. sanog. or g. bt
scp -r /usr/ports/palm* adm n@cN. ws. sanog. org. bt/tnp/.

Once you are connected:
* “-r”forrecursively copy

sftp>lcd /tnp [change | ocal directory to /tnp]

sftp> cd /etc [change renote directory to /etc]

sftp> get notd [downl oad /etc/notd to /tnp/notd] o « ” i i '
stios g Lo camaryhel o) /tmp/.” to place files in your neighbor's
sftp> bye [term nate connection] /tmp dll‘ECtOI'y.

I's /tnp/notd [prove you got the file]

SSH - Lab Cont. SSH Conclusion

Now let's use the power of scp some more! SSH, SCP, and SFTP are great tools for
(Note: we may skip this exercise...) connecting between machines and
Copy a file from one remote machine to another. copying data while helping to maintain a

. \ . secure environment.
Let's move /etc/fstab on your left neighbor's machine

- . ,
to/ tmp/ fSt&}b-COPY on your I‘lght nelghbor S If you can, we recommend you remove telnet and FTP from
machine using a single command. your system. Or, at most, only allow anonymous FTP access.
scp adm n@CcLEFT. us. sanog. org. bt: /etc/fstab \ You can use SSH to tunnel ports securely that would otherwise

adm n@CRI GHT. ws. sanog. org. bt/ tnp/ fstab. copy pass your information (username, password, and session

« “\” for newline, not part of the command. data) in the clear.
. . Remember - Use the references for more detailed information.
* Ifadmin password is the same on both you Only This includes “man ssh” and “man sshd” for much more

enter it once. information.

* Did you notice we renamed the file as well?

THIS FAGE INTEMTIOMALLY LEFT BLANE kb

SSH - Lab Cont.
Example of a No Challenge Connection

We will now use ssh-agent and ssh-add to setup an
environment on your machine where you can connect to
your other machine, as admin, without having to enter a
password or passphrase at the time of the connection.

You will, however, have to enter your RSA protocol 2 private
key passphrase once during tﬁis session. We'll discuss ssh-
add and ssh- agent in class, butread “man ssh-agent”
and “man ssh-add” for more details:

On the next slide you will setup your bash shell environment to
contain your RSA protocol version 2 private key passphrase.
This will allow you to connect, logout, reconnect, exit,
connect again, and so on to admin at the host you have
chosen issuing your private key passphrase only once:

Additional Topics

We have made available additional or advanced
topics for those who are interested:

* No challenge connection
* ssh-agent and ssh-add

* ssh tunnels
* Direct and indirect port forwarding

e Private key without passphrase
* Remote command execution

SSH - Lab Cont.

Example of a No Challenge Connection

Follow these steps to setup a “no challenge” connection:

ssh-agent /bin/bash
ssh-add.
ssh adm n@cn. ws. sanog. or g. bt

What happened? You should have been prompted for your RSA
version 2 protocol private key passphrase (remember, that's
what is in'~/.ssh/id_rsa) when'you typed ssh- add. Then,
when you connected you did not need a passghrase. (If you
have an RSA 1 key, you will be prompted for the passphrase
for ~/.ssh/identity).

Now for the fun part. Logout, and log back in to the same session:
| ogout
ssh adm n@cn. ws. sanog. or g. bt

Now what happened?

SSH - Lab Cont.
No Challenge Connection Notes

ssh-add and ssh-agent have some slightly different
behavior than just using ssh.

If you don't specify a passhprase for your private key files
when you create them, then you can truly connect with no
password challend of any type - This is dangerous!

Note that ssh-add defaults to ~/.ssh/id_rsa first then
id_dsa.

SSH - Lab Cont.
Additional Notes

* You can use ssh-agent to “wrap” other
programs that may need to use RSA/DSA
authentication, but that cannot deal with
multiple passphrase (or password) requests.

* These lab slides contain a complete session
with notes of using ssh-agent and ssh-add.

SSH - Lab Cont.

ssh-agent/ssh-add session*

host 5# where bash
/'usr /| ocal / bi n/ bash
host 5# ssh-agent /usr/l ocal/bin/bash [Wap bash in ssh-agent]
bash- 2. 05a# ssh-add [Add rsal private key by default]
Need passphrase for /adnin/.ssh/identity
Enter passphrase for adm n@:c5. ws. sanog. or g. bt :
Identity added: /admin/.ssh/identity (adm n@c5.ws.sanog. org. bt)
bash- 2. 05a# ssh-add ~/.ssh/id_rsa [Add rsa v2 private key explicitly]
Need passphrase for /adnmin/.ssh/id_rsa
Enter passphrase for /adm n/.ssh/id_rsa:
Identity added: /admin/.ssh/id_rsa (/admn/.ssh/id_rsa)
bash- 2. 05a# ssh adm n@c6. ws. sanog.org. bt [Login with no password chal | enge]
Last login: Tue May 7 02:47:24 2002 from pc5. ws. sanog. org. bt
Copyright (c) 1980, 1983, 1986, 1988, 1990, 1991, 1993, 1994

The Regents of the University of California. All rights reserve
FreeBSD 4.5- RELEASE (GENERIC) #0: Mbn Jan 28 14:31:56 GMI 2002

[Find where bash resides]

SANOG VI Workshop — Thi nphu, Bhut an

You have mail.
host 6#

*Still relevant, but exanple is from May 2002 using SSH Version 3.1.

SSH - Lab Cont.

ssh-agent/ssh-add session

host 6# exit [Exit the shell session]

| ogout

Connection to pc6.ws. sanog. org. bt .

bash- 2. 05a# ssh adm n@c6. ws. sanog. or g. bt [Log back in - No password!]

Last login: Tue May 7 03:00:53 2002 from pc5. ws. sanog. org. bt
Copyright (c) 1980, 1983, 1986, 1988, 1990, 1991, 1993, 1994

The Regents of the University of California. All rights reserve
FreeBSD 4.5- RELEASE (GENERI C) #0: Mbon Jan 28 14:31:56 GMI 2002

You have mail.

host 6# exit [Exit the session again]

| ogout

Connection to pc6.ws. sanog. org. bt cl osed.

bash- 2. 05a#

bash- 2. 05a# ssh-add - | [Show rsa/dsa key fingerprints]
2048 7d: 68: 9b: 55: Of : ba: 6¢: 75: 23: ab: 36: fb: 4c: a3: 66: ea /adnmin/.ssh/id_rsa (RSA)

bash- 2. 05a#

SSH - Lab Cont.

ssh-agent/ssh-add session end

bash- 2. 05a# ssh-add -d ~/.ssh/id_rsa [Remove a private key]
Identity removed: /adm n/.ssh/id_dsa (/adm n/.ssh/id_dsa.pub)

bash- 2. 05a# ssh-add -| [Li st remaining keys]
bash- 2. 05a#

bash-2. 05a# exit

exit [Exit ssh-agent bash shell]
host 5#

Don't forget to read up on this with “man ssh- agent,” and
“man ssh-add” for many more options and details about
how to use these programs.

Tunneling with SSH Cont.

The basic concept looks like this:

e Connect from one machine to another as
user namne.

* Use ssh options to specify the port
number on the remote machine that you
wish to forward to the port on your local
machine.

* Your ssh connection will “tunnel” data
securely across ssh from the remote
machine to your local machine.

e There are several options to be aware of.

Tunneling with SSH

The Topic You've Been Waiting For...

* You can use SSH to tunnel insecure services
in a secure manner.

* SSH tunneling services includes
authentication between known_hosts,
password challenge, and public/private key
exchanges.

* You can even indirectly tunnel via an
intermediary machine.

Tunneling with SSH Cont.
Tunneling by Example

Here is a sample tunnel command using SSH
under FreeBSD:

ssh -C -f username@ost.domain -L 1100: 1 ocal host: 110 sl eep 10000

What is happening here?

- The '-C' option specifies compress the data. Good if it
works.

- '-f' means ssh goes to the background just before executing
the specified command listed (in this case, “sleep 10000”).

- '-L' forwards the port on the left, or client (1100) to the one
on the right (110) or remote side.

Tunneling with SSH Cont.
Tunneling by Example Cont.

So, what does this command do?

ssh -C -f username@ost.domain -L 1100: | ocal host: 110 sl eep 10000

¢ This “tunnels” your POP email from port 110 on the remote side
through port 1100 on your local side.

¢ The process backgrounds for 10000 seconds (detaches and runs).

¢ This is done under the authority between yourself (client) and
user@host.domain.

Diagram* of Tunneling both smtp and POP Services

Host . domai n: 110

| ocal host: 1100 0O-<#---------- + ~ o~ e +>--<<--0-- - - - - m e +
|SSHdient|~ ~ ~ ~ ~ | SSH Ser ver | mail server |

| ocal host: 2500 0->+---------- + o~ o~ oo +>-->>--0--------- - +
host . domai n: 25

*Thanks to http://www.ccs.neu.edu/ groups/systems/howto/howto-sshtunnel.html

Tunneling with SSH Cont.
One More Tunneling Example

You can use SSH to do “Indirect Port Forwarding”
e What to do if your organization's email sits behind a
firewall?
¢ Connectvia an intermediary box (gateway).
Here's areal world example:

Ssh -C -f hal |l en@at eway. t urbol i nux. com-L
2500: mai | .us.tlan: 25 -L 1100: mail.us.tlan: 110 /bin/sl eep
10000

I ocal host: 1100 0-<#---------- + o~ o~ oo B +. .
|SSHdient|~ ~ ~ ~ ~ | SSH Ser ver | gat enay |..
| ocal host: 2500 0->+---------- + o~ o~ oo T +. .

host . donai n: 110

D R +>--<<--0--mmmmmmmmmm e +
| SSH Server | mail.us.tlan|
R e 4>--5>--0----mmmmmmmm o +
host . domai n: 25

Tunneling with SSH Cont.
Tunneling by Example Cont.

Why use something like ports “1100” and

“2500”2

* Ports up to 1024 can only be reset by the admin user.

¢ Ifyouare admin you can forward 110 to 110, 25 to 25, and so on.

* Other popular tunneling tricks include tunnels for XWindows,
IMAP, etc.

* On the client side you must set programs to use “localhost” - For
example, for POP and smtp, your mail client must use “localhost”
instead of host.domain (i.e. no more “mail.host.com”).

e Ifyouare notadmin, and your ports are changed, then your mail
client must be able to set the smtp and POP ports as well.

* We may show or discuss this using a local email client now.

Tunneling with SSH Conclusion

* Tunneling lets you securely access basic
services such as POP and IMAP.

* You can securely tunnel ports using SSH.

* You can use /etc/services to verify you are
not using a port that is already defined.

* Only admin can redfine ports below 1024.

* You can tunnel ports directly between two
machines, and indirectly with a machine in

the middle.

Some ssh hacks

Ok, let's break the rules. Imagine if you did not
Eene?rate a passphrase for your private ssh
eys?...

These ideas are courtesy of Linux Server Hacks
by Rob Flickenger and O'Reilly books.

OK, so you don't generate a password when
enerating your passphrase (hit enter twice).
at are the security implications of this?

Bottom line: Keep your private key safe! :-)

If you were to lose your private key you would need to remove all your
public keys from all servers and accounts where they reside!

Some ssh hacks cont.

If you have a private key without a passphrase
then you can take advantage of this by writing
?h short script named “ssh-to” that looks like

is:

#!/ bi n/ sh
ssh "~ basename $0° $*

Place this in /home/userid/bin and try
something like:

ssh-to pcN ws. sanog. or g. bt
ssh-to pcN ws. sanog. org. bt uptine

Some ssh hacks cont.

Note that ssh passes your username to the
server if you don't specify one. So, what
happened? You connected with no challenge
at all.

Even better, you can run remote commands on
the server (remember the “$*” in our script?).

Now, to really speed things up do:

cd bin

In -s ssh-to host1
In -s ssh-to host2
In -s ssh-to host3

Some ssh hacks cont.
Now you just have to type something like:

host 3 upti ne

Assuming you have your public_keys on this
machine.

As a system administrator this clearly serves you
well if you do this as admin and you have
admin access on multiple boxes.

If you were to do this as roof, then you need to
make sure that “Per ni t Root Logi n yes” is set in
/etc/ssh/sshd_config on each machine you
wish to connect with.

Now some ssh-agent hacks

Using ssh and ssh-agent it's possible to connect
to hostl as userl and from host1 connect to
host2 as userl again without needing a
password!

ssh-agent will check with ssh-agent in your
original shell if the “For war dAgent yes”
flag has been set in either ~/.ssh/config (if it
exists), or in /etc/ssh/ssh_config. This must
be set on all machines where you wish to do
this.

ssh-agent hacks cont.
To continue first do:

eval "~ssh-agent’

Then:
ssh-add

If you have passwords, then you'll have to enter
them for each ssh private key you generated
(if they are different). Otherwise your private
keys will automatically be loaded in to
memory.

ssh-agent hacks cont.

If no passwords were set on any of your private
keys, your public keys are on host2, host3,
and host4, and you have admin access on
each machine, then you can do this:

adm nssh host 2
adm nssh host 3
adm nssh host 4

And you will not be asked for a password at any
time. Very cool, and seems kind of scary...

One final ssh-agent hack

What happens in a GUI environment with ssh-
agent and terminals? Each time you open a
terminal you must run “ssh- agent ” and
“ssh-add” again.

What if ssh-agent automatically spawns each
time you open a terminal? This can be done
with a short scripts that uses ~/.agent.env to
point to the currently running ssh-agent.

Do this by adding code to your ~/.profile file. If
you have passphrases on your private keys
you will need to enter them the first time you
open a terminal window.

One final ssh-agent hack cont.

Credit to Rob Flickenger, Linux Server Hacks, pp.
144, O'Reilly books:

Code not yet included.
Awaiting author approval.
But, if you buy the book... :-)

