AfNOG 2005

Track EO:
Unix System Administration

Welcome!

* Who are we?
* Timetable and administrivia
* Objectives for the week
- Learn your way around Unix/FreeBSD
- TCP/IP network-based services
- Security
- Upgrading and maintenance

Why use UNIX?

* Scalability and reliability
- has been around for many years
- works well under heavy load
* Flexibility
- emphasises small, interchangeable components
* Manageability
- remote logins rather than GUI
- scripting
* Security
- Windows has a long and sad security history
- Unix and its applications are not blameless though

This is YOUR workshop!

¢ Stop us if we're speaking too fast

¢ Stop us if you don't understand anything

* Ask lots of questions!

Windows DOES NOT SCALE

* OK for 100 mailboxes

* But don't try to run 10,000 mailboxes

* Even Microsoft doesn't eat their own dogfood
- hotmail

* Remote administration is painful
- It's still a desktop OS

* Spend your entire life installing patches?

¢ Blue screen of death

¢ Commercial pricing but lousy support

Simplified Unix family tree

AT&T
4.4BSD System V
“BSDIE Solaris[s]
Linux
Red Hat (rpm)[§]
NetBSD mandrake
N FreeBSD SuSE
OpenBSD yellowdog etc
debian (apt)
gentoo (portage)
others...

Why did we choose FreeBSD?

* It's Free!

¢ Optimised for performance on i386 hardware
- NetBSD aims to run on many platforms
- OpenBSD aims to provide enhanced security

* Well proven in real-world environments

Why not Linux?

* Too many distributions to choose from
* Red Hat used to be the de-facto choice for a
reliable, free distribution
- Now it has gone commercial
- Mandrake and SuSE could follow suit
- Fedora is "bleeding edge" and has short lifecycle
* BSD includes the kernel and the userland
utilities in a single source tree
* BSD tends to be more "conservative"
- emphasises stability and compatibility
- compare: ipfw, ipfwadm, ipchains, iptables...

First topics:

* Unix birds-eye overview
* Partitioning
* FreeBSD installation

Is free software really any good?!

* The people who write it also use it
* Source code is visible to all
- The quality of their work reflects on the author
personally
- Others can spot errors and make improvements
* What about support?
- documentation can be good, or not so good
- mailing lists; search the archives first
- if you show you've invested time in trying to solve a
problem, others will likely help you
- http://www.catb.org/~esr/fags/smart-questions. html

Key components of the Unix OS

* Kernel * Inter-process
* Shell communication
* User processes * Security model

* System processes * Filesystem layout

Kernel

* The "core" of the operating system
* Device drivers
- communicate with your hardware
- block devices, character devices, network devices,
pseudo devices
* Filesystems
- organise block devices into files and directories
* Memory management
* Timeslicing (multiprocessing)
* Networking stacks - esp. TCP/IP
* Enforces security model

Shell

¢ Command line interface for executing
programs
- DOS/Windows equivalent: command.com or
command.exe
* Choice of similar but slightly different shells
- sh: the "Bourne Shell". Standardised in POSIX
- csh: the "C Shell". Not standard but includes
command history
- bash: the "Bourne-Again Shell". Combines POSIX
standard with command history. But distributed
under GPL (more restrictive than BSD licence)

User processes

* The programs that you choose to run
* Frequently-used programs tend to have short
cryptic names
- "Is" = list files
- "cp" = copy file
- "rm" = remove (delete) file
* Lots of stuff included in the base system
- editors, compilers, system admin tools
¢ Lots more stuff available to install too
- packages / ports

Inter-process communication

* Pipes: easy to use!
- grep hostname /etc/* | less
* Other, more specialised mechanisms
- fifos (named pipes)
- sockets
- System V IPC and shared memory

System processes

* Programs that run in the background; also
known as "daemons”
* Examples:
- cron: executes programs at certain times of day
- syslogd: takes log messages and writes them to
files
- inetd: accepts incoming TCP/IP connections and
starts programs for each one
- sshd: accepts incoming logins
- sendmail (other other MTA daemon): accepts
incoming mail

Security model

* Numeric IDs
- user id (uid 0 = "root", the superuser)
- group id
- supplementary groups

* Mapped to names
- Jetc/passwd, /etc/group (plain text files)
- /etc/pwd.db (fastindexed database)

* Suitable security rules enforced

- e.g. you cannot kill a process running as a different
user, unless you are "root"

Filesystem security

* Each file and directory has three sets of
permissions
- For the file's uid (user)
- For the file's gid (group)
- For everyone else (other)
¢ Each set of permissions has three bits: rwx
- File: r=read, w=write, x=execute
- Directory: r=list directory contents, w=create/delete
files within this directory, x=enter directory
e Example: brian wheel rwxr-x---

Key differences to Windows

¢ Unix commands and filenames are CASE-
SENSITIVE

¢ Path separator: / for Unix, \ for Windows

* Windows exposes a separate filesystem tree
for each device
- AXfoo.txt, C:\bar.txt, E:\baz.txt
- device letters may change, and limited to 26

* Unix has a single ‘virtual filesystem' tree
- /bar.txt, /mntffloppy/ffoo.txt, /cdrom/baz.txt
- administrator choses where each FS is attached

Standard filesystem layout

/bin essential binaries

/ boot kernel and nodul es

/ dev devi ce access nodes

letc configuration data
letc/defaults configuration defaults
letc/rc.d startup scripts

/ hone/ user name user's data storage

/lib essential libraries

/sbin essential sysadmin tools

/ st and recovery tool s

/tmp tenporary files

/usr progs/ appl i cations

I var data files (logs, E-mail

nessages, status files)

Why like this?

* It's good practice to keep /usr and fvar in
separate filesystems in separate partitions
- Soif /var fills up, the rest of the system is
unaffected
- Soif /usr or /var is corrupted, you can still boot up
the system and repair it
* That's why we have a small number of
essential tools in /bin, /sbin; the rest go in
Jusr/bin and /usr/sbin
* Third-party packages are separate again
- Jusr/local/bin, /usr/local/sbin, /usr/local/etc ...

Standard filesystem layout (cont)

A note about devices

* e.g. /dev/ad0 = the first ad (ATAPI/IDE disk)
* In FreeBSD 5.x, entries for each device under
/dev are created dynamically
- e.g. when you plug in a new USB device
- In FreeBSD 4.x, you had to create device nodes
manually: mknod
¢ Some "devices" don't correspond to any
hardware (pseudo-devices)
- e.g. /dev/null is the "bit bucket"; send your data
here for it to be thrown away

/usr
/usr/bin binaries
lusr/lib libraries
lusr/libexec daenons
/usr/sbin sysadmi n binaries
/usr/share docunents
lusr/src source code
lusr/local/... 3rd party applications
/usr/X11R6/ . .. graphi cal applications

/var
/var/log log files
/var/mail nai | boxes
/var/run process status
/ var / spool queue data files
/var/tmp temporary files

Any questions?

Some reminders about PC
architecture

* When your computer turns on, it starts a
bootup sequence in the BIOS

* The BIOS locates a suitable boot source (e.g.

floppy, harddrive, CD-ROM, network)

* Disks are devided into 512-byte blocks

¢ The very first block is the MBR (Master Boot
Record)

* The BIOS loads and runs the code in the
MBR, which continues the bootup sequence

Some legacy problems

* QOriginal PC architecture dates from 1980s

* Early disks were accessed by CHS (cylinder,
head, sector). Cylinder was 10-bit number.
Hence BIOS could not access beyond 1024
cylinders

* Nowadays we have Linear Block Addressing
(LBA). However standard BIOS entry point is
limited to 24-bit address. That limits BIOS to
accessing 2424 blocks, or first 8GB of disk

Partitioning

* The MBR contains a table allowing the disk to
be divided into (up to) four partitions

* Beyond that, you can nominate one partition
as an "extended partition" and then further
subdivide it into "logical partitions"

* FreeBSD has its own partitioning system,
because Unix predates the PC

* FreeBSD recognises MBR partitions, but calls
them "slices” to avoid ambiguity

The 8GB problem

¢ Many OSes won't boot if they are above the
8GB point, since they use this BIOS call
* However, once the OS is booted, the problem
goes away
- FreeBSD talks directly to the hardware
- "We don't need no steenking BIOS!"
* So only your root partition containing the
kernel (/boot directory) has to be below 8GB;
the rest is usable for data

FreeBSD partitions

* Partitions (usually) sit within a slice

* Partitions called a,b,c,d,e,f,g,h

* CANNOT use 'c'
- for historical reasons, partition 'c' refers to the

entire slice

* By convention, 'a' is root partition and 'b' is
swap partition

¢ 'swap' is optional, but used to extend capacity
of your system RAM

Simple partitioning: /dev/ad0

MBR Single slice /dev/ad0s1

|

/ swap [var /tmp Jusr
!/ (root partition) adOsla 256MB
swap partition adOs1b ~ 2 x RAM
I var adOs1d 256MB (+)
/tnp adOsle 256MB

lusr ad0s1f rest of disk

'Auto’ partition does this:

¢ Small root partition
- this will contain everything not in another partition
- /boot for kernel, /bin, /sbin etc.
* A swap partition for virtual memory
* Small /tmp partition
- so users creating temporary files can't fill up your
root partition
¢ Small /var partition
* Rest of disk is /usr
- Home directories are /usr/home/<username>

Issues

¢ /var may not be big enough
¢ /usr contains the OS, 3rd party software, and
your own important data
- If you reinstall from scratch and erase /usr, you will
lose your own data
* So you might want to split into /usr and /u
- Suggest 4-6GB for /usr, remainder for /u
* Some people prefer a ramdisk for /tmp
letc/fstab: 64MB ramdi sk

nd /tnp nfs -s131072, rw, nosui d, nodev, noat i me 0 0

Why like that?

* Both s2a and s3a are below the 8GB level
¢ Aids in system upgrades/reinstalls
- You can have a complete FreeBSD installation in
s2, and later install a completely new version in s3
- You can switch between the versions at bootup
- When setting up configs in s3, you can mount s2
(read-only) to refer back to
¢ This is just a suggestion however. May not be
appropriate or necessary in your case

A more complex strategy

¢ Divide disk into 4 slices

- s1: 0.5GB

* Spare. For emergencies, MSDOS etc.
- s2: 7GB

* s2a: 0.25GB /

« s2b: 0.5GB swap

¢ s2d: 0.25GB /tmp

* s2e: 1GB var

« s2f: 5GB fusr
-s3:7GB

¢ same as 52
- s4: rest of disk

*sdaju

Note...

* Slicing/partition is juts a logical division
* If your hard drive dies, most likely everything
will be lost
* If you want data security, then you need to set
up mirroring with a separate drive
- Another reason to keep your data on a separate
partition, e.g. /u

Summary: block devices

* IDE (ATAPI) disk drives
- /dev/ad0
- /dev/adl ...etc

* SCSI or SCSI-like disks (e.g. USB flash)
- /dev/da0
- /dev/dal ..etc

* IDE (ATAPI) CD-ROM
- /dev/acd0 ...etc

* Traditional floppy drive
- /dev/ffd0

* etc.

Summary

* Slices * BSD Partitions
- /dev/ad0s1 - /dev/adOsla
- /dev/ad0s2 - /dev/ad0s1b
- /dev/ad0s3 - /dev/adOs1ld ...etc
- /dev/ad0s4 - /dev/ad0s2a
* Defined in MBR - /dev/ad0s2b
* What PC heads call - /dev/ad0s2d ...etc
“partitions” * Conventions:
-"a'is/
- 'b'is swap

- 'c’ cannot be used

Any questions?

Finding more information

¢ Qur reference handout
- a roadmap!
* www.freebsd.org
- handbook, searchable website / mail archives
¢ "The Complete FreeBSD" (O'Reilly)
¢ comp.unix.shell FAQ
- http://www.fags.org/fags/
by-newsgroup/comp/comp.unix.shell.html
* STFW (Search The Friendly Web)

Installing FreeBSD

¢ Surprisingly straightforward
* Boot from CD or floppies, runs sysinstall
* Slice your disk
- Can delete existing slice(s)
- Create a FreeBSD slice
* Partition
* Choose which parts of FreeBSD distribution
you want, or "all
* Install from choice of media
- CD-ROM, FTP, even a huge pile of floppies!

