

BGP Best Current Practices

Philip Smith

E2 Workshop, AfNOG2006

What is BGP for??

What is an IGP not for?

BGP versus OSPF/ISIS

- Internal Routing Protocols (IGPs)
 - examples are ISIS and OSPF
 - used for carrying infrastructure addresses
 - NOT used for carrying Internet prefixes or customer prefixes
 - design goal is to minimise number of prefixes in IGP to aid scalability and rapid convergence

BGP versus OSPF/ISIS

- BGP used internally (iBGP) and externally (eBGP)
- iBGP used to carry
 - some/all Internet prefixes across backbone
 - customer prefixes
- eBGP used to
 - exchange prefixes with other ASes
 - implement routing policy

Model representation

BGP versus OSPF/ISIS

DO NOT:

- distribute BGP prefixes into an IGP
- distribute IGP routes into BGP
- use an IGP to carry customer prefixes
- YOUR NETWORK WILL NOT SCALE

Aggregation

Quality, not Quantity!

Aggregation

- ISPs receive address block from Regional Registry or upstream provider
- Aggregation means announcing the address block only, not subprefixes
- Aggregate should be generated internally

Configuring Aggregation: Cisco IOS

- ISP has 101.10.0.0/19 address block
- To put into BGP as an aggregate:

```
router bgp 100
network 101.10.0.0 mask 255.255.224.0
ip route 101.10.0.0 255.255.224.0 null0
```

- The static route is a "pull up" route
 - more specific prefixes within this address block ensure connectivity to ISP's customers
 - "longest match lookup"

- Address block should be announced to the Internet as an aggregate
- Subprefixes of address block should NOT be announced to Internet unless fine-tuning multihoming
 - And even then care and frugality is required – don't announce more subprefixes than absolutely necessary

Announcing Aggregate: Cisco IOS

Configuration Example

```
router bgp 100
  network 101.10.0.0 mask 255.255.224.0
  neighbor 102.102.10.1 remote-as 101
  neighbor 102.102.10.1 prefix-list out-filter out
!
ip route 101.10.0.0 255.255.224.0 null0
!
ip prefix-list out-filter permit 101.10.0.0/19
ip prefix-list out-filter deny 0.0.0.0/0 le 32
```


Announcing an Aggregate

- ISPs who don't and won't aggregate are held in poor regard by community
- Registries' minimum allocation size is now at least a /21
 - no real reason to see anything much longer than a /22 prefix in the Internet
 - BUT there are currently >101000 /24s!

The Internet Today (May 2006)

Current Internet Routing Table Statistics	
BGP Routing Table Entries	187255
Prefixes after maximum aggregation	103563
Unique prefixes in Internet	91865
Prefixes smaller than registry alloc	92110
/24s announced	101414
only 5719 /24s are from 192.0.0.0/8	
ASes in use	22089

Efforts to Improve Aggregation: The CIDR Report

- Initiated and operated for many years by Tony Bates
- Now combined with Geoff Huston's routing analysis

www.cidr-report.org

- Results e-mailed on a weekly basis to most operations lists around the world
- Lists the top 30 service providers who could do better at aggregating

- Also computes the size of the routing table assuming ISPs performed optimal aggregation
- Website allows searches and computations of aggregation to be made on a per AS basis
 - Flexible and powerful tool to aid ISPs
 - Intended to show how greater efficiency in terms of BGP table size can be obtained without loss of routing and policy information
 - Shows what forms of origin AS aggregation could be performed and the potential benefit of such actions to the total table size
 - Very effectively challenges the traffic engineering excuse

Aggregation: Summary

- Aggregation on the Internet could be MUCH better
 - 35% saving on Internet routing table size is quite feasible
 - Tools are available
 - Commands on the router are not hard
 - CIDR-Report webpage

Receiving Prefixes

- ISPs should only accept prefixes which have been assigned or allocated to their downstream peer
- For example
 - downstream has 100.50.0.0/20 block
 - should only announce this to peers
 - peers should only accept this from them

Receiving Prefixes: Cisco IOS

Configuration Example on upstream

```
router bgp 100
neighbor 102.102.10.1 remote-as 101
neighbor 102.102.10.1 prefix-list customer in
!
ip prefix-list customer permit 100.50.0.0/20
ip prefix-list customer deny 0.0.0/0 le 32
```


- Not desirable unless really necessary
 - special circumstances
- Ask upstream to either:
 - originate a default-route
 - announce one prefix you can use as default

Downstream Router Configuration

```
router bgp 100
network 101.10.0.0 mask 255.255.224.0
neighbor 101.5.7.1 remote-as 101
neighbor 101.5.7.1 prefix-list infilt in
neighbor 101.5.7.1 prefix-list outfilt out
!
ip prefix-list infilt permit 0.0.0.0/0
ip prefix-list infilt deny 0.0.0.0/0 le 32
!
ip prefix-list outfilt permit 101.10.0.0/19
ip prefix-list outfilt deny 0.0.0.0/0 le 32
```

Upstream Router Configuration

```
router bgp 101
neighbor 101.5.7.2 remote-as 100
neighbor 101.5.7.2 default-originate
neighbor 101.5.7.2 prefix-list cust-in in
neighbor 101.5.7.2 prefix-list cust-out out
!
ip prefix-list cust-in permit 101.10.0.0/19
ip prefix-list cust-in deny 0.0.0.0/0 le 32
!
ip prefix-list cust-out permit 0.0.0.0/0
ip prefix-list cust-out deny 0.0.0.0/0 le 32
```


- If necessary to receive prefixes from upstream provider, care is required
 - don't accept RFC1918 etc prefixes
 - don't accept your own prefix
 - don't accept default (unless you need it)
 - don't accept prefixes longer than /24

Receiving Prefixes

```
router bgp 100
network 101.10.0.0 mask 255.255.224.0
neighbor 101.5.7.1 remote-as 101
neighbor 101.5.7.1 prefix-list in-filter in
ip prefix-list in-filter deny 0.0.0.0/0
                                                   ! Block default
ip prefix-list in-filter deny 0.0.0.0/8 le 32
ip prefix-list in-filter deny 10.0.0.0/8 le 32
ip prefix-list in-filter deny 101.10.0.0/19 le 32 ! Block local prefix
ip prefix-list in-filter deny 127.0.0.0/8 le 32
ip prefix-list in-filter deny 169.254.0.0/16 le 32
ip prefix-list in-filter deny 172.16.0.0/12 le 32
ip prefix-list in-filter deny 192.0.2.0/24 le 32
ip prefix-list in-filter deny 192.168.0.0/16 le 32
ip prefix-list in-filter deny 224.0.0.0/3 le 32
                                                   ! Block multicast
ip prefix-list in-filter deny 0.0.0.0/0 ge 25
                                                   ! Block prefixes >/24
ip prefix-list in-filter permit 0.0.0.0/0 le 32
```

Generic ISP BGP prefix filter

- This prefix-list MUST be applied to all external BGP peerings, in and out!
- RFC3330 lists many special use addresses
- Check Rob Thomas' list of "bogons"
 - http://www.cymru.com/Documents/bogon-list.html

```
ip prefix-list rfc1918-sua deny 0.0.0.0/8 le 32 ip prefix-list rfc1918-sua deny 10.0.0.0/8 le 32 ip prefix-list rfc1918-sua deny 127.0.0.0/8 le 32 ip prefix-list rfc1918-sua deny 169.254.0.0/16 le 32 ip prefix-list rfc1918-sua deny 172.16.0.0/12 le 32 ip prefix-list rfc1918-sua deny 192.0.2.0/24 le 32 ip prefix-list rfc1918-sua deny 192.168.0.0/16 le 32 ip prefix-list rfc1918-sua deny 224.0.0.0/3 le 32 ip prefix-list rfc1918-sua deny 0.0.0.0/0 ge 25 ip prefix-list rfc1918-sua permit 0.0.0.0/0 le 32
```


Prefixes into iBGP

- Use iBGP to carry customer prefixes
 - don't use IGP
- Point static route to customer interface
- Use BGP network statement
- As long as static route exists (interface active), prefix will be in BGP

Router configuration: network statement

Example:

```
interface loopback 0
  ip address 215.17.3.1 255.255.255.255
!
interface Serial 5/0
  ip unnumbered loopback 0
  ip verify unicast reverse-path
!
ip route 215.34.10.0 255.255.252.0 Serial 5/0
!
router bgp 100
  network 215.34.10.0 mask 255.255.252.0
```


Injecting prefixes into iBGP

- interface flap will result in prefix withdraw and reannounce
 - use "ip route...permanent"
- many ISPs use redistribute static rather than network statement
 - only use this if you understand why

Router Configuration: redistribute static

Example:

```
ip route 215.34.10.0 255.255.252.0 Serial 5/0
!
router bgp 100
  redistribute static route-map static-to-bgp
<snip>
!
route-map static-to-bgp permit 10
  match ip address prefix-list ISP-block
  set origin igp
<snip>
!
ip prefix-list ISP-block permit 215.34.10.0/22 le 30
!
```


Injecting prefixes into iBGP

- Route-map ISP-block can be used for many things:
 - setting communities and other attributes
 - setting origin code to IGP, etc
- Be careful with prefix-lists and route-maps
 - absence of either/both means all statically routed prefixes go into iBGP

Configuration Tips

- Good practice to configure templates for everything
 - Vendor defaults tend not to be optimal or even very useful for ISPs
 - ISPs create their own defaults by using configuration templates
 - Sample iBGP and eBGP templates follow for Cisco IOS

neighbor internal peer-group
neighbor internal description ibgp peers
neighbor internal remote-as 100
neighbor internal update-source Loopback0
neighbor internal next-hop-self
neighbor internal send-community
neighbor internal version 4
neighbor internal password 7 03085A09
neighbor 1.0.0.1 peer-group internal

neighbor 1.0.0.2 peer-group internal

BGP Template – iBGP peers

- Use peer-groups
- iBGP between loopbacks!
- Next-hop-self
 - Keep DMZ and point-to-point out of IGP
- Always send communities in iBGP
 - Otherwise accidents will happen
- Hardwire BGP to version 4
 - Yes, this is being paranoid!
- Use passwords on iBGP session
 - Not being paranoid, VERY necessary

BGP Template – eBGP peers

```
Router B:
router bgp 100
network 10.60.0.0 mask 255.255.0.0
neighbor external peer-group
neighbor external remote-as 200
neighbor external description ISP connection
neighbor external remove-private-AS
neighbor external version 4
neighbor external prefix-list ispout out ! "real" filter
neighbor external filter-list 1 out    ! "accident" filter
neighbor external route-map ispout out
neighbor external prefix-list ispin in
neighbor external filter-list 2 in
neighbor external route-map ispin in
neighbor external password 7 020A0559
neighbor external maximum-prefix 220000 [warning-only]
neighbor 10.200.0.1 peer-group external
ip route 10.60.0.0 255.255.0.0 null0 254
```


BGP Template – eBGP peers

- Remove private ASes from announcements
 - Common omission today
- Use extensive filters, with "backup"
 - Use as-path filters to backup prefix-lists
 - Use route-maps for policy
- Use password agreed between you and peer on eBGP session
- Use maximum-prefix tracking
 - Router will warn you if there are sudden increases in BGP table size, bringing down eBGP if desired

More BGP "defaults"

- Log neighbour changes
 - Log neighbour changes
 - bgp log-neighbor-changes
- Enable deterministic MED
 - bgp deterministic-med
 - Otherwise bestpath could be different every time BGP session is reset
- Make BGP admin distance higher than any IGP
 - distance bgp 200 200 200

Configuration Tips Summary

- Use configuration templates
- Standardise the configuration
- Anything to make your life easier, network less prone to errors, network more likely to scale
- It's all about scaling if your network won't scale, then it won't be successful

Summary – BGP BCP

- BGP versus IGP
- Aggregation
- Sending & Receiving Prefixes
- Injecting Prefixes into iBGP
- Configuration Tips