

High-Capacity Email Systems

Steve VanDevender
University of Oregon

Goals of this tutorial

● Present a comprehensive overview of
email systems (transmission, delivery,
access)

● Discuss issues important to large email
systems (efficiency, interoperability,
abuse prevention)

● Discuss factors that affect email system
performance and ability to handle growth

Overview

● Introduction: Email system architecture,
components, and protocols

● Implementation considerations for
components of large email systems

● Techniques for high availability and
growth

● Case studies

Introduction: Mail System
Architecture, Components, and

Protocols

Email system block diagram

MTA LDA

POP

IMAP

Other
MTAs

MUA
Mail
Store

MTA (Mail Transfer Agent)

● Routes email based on recipient
information

● Common MTA software: Exim, Postfix,
Sendmail

● Mail destined for local users is passed to
LDA (Local Delivery Agent)

● Mail to remote users is passed to another
MTA using SMTP (“Simple” Mail Transfer
Protocol)

SMTP (Simple Mail Transfer
Protocol)

● Defined in RFC 2821 (update of original
RFC 821)

● Simple, text-based protocol
– Four-letter commands (usually) with

arguments (HELO/EHLO, MAIL From:, RCPT
To:, DATA, QUIT)

– Three-digit status codes in response to
commands, with optional text comments

● Essentially the only network protocol for
email transmission on the Internet

SMTP example
220 smtp.uoregon.edu ESMTP Sendmail 8.13.8/8.13.8; Wed, 14 Feb 2007 12:56:06 -0800
>>> EHLO hexadecimal.uoregon.edu
250-smtp.uoregon.edu Hello hexadecimal [128.223.142.97], pleased to meet you
250-ENHANCEDSTATUSCODES
250-PIPELINING
250-EXPN
250-VERB
250-8BITMIME
250-SIZE 10485760
250-DSN
250-ETRN
250-AUTH PLAIN LOGIN
250-DELIVERBY
250 HELP
>>> MAIL From:<stevev@hexadecimal.uoregon.edu> SIZE=342 AUTH=<>
250 2.1.0 <stevev@hexadecimal.uoregon.edu>... Sender ok
>>> RCPT To:<stevev@uoregon.edu>
250 2.1.5 <stevev@uoregon.edu>... Recipient ok
>>> DATA
354 Enter mail, end with "." on a line by itself
>>> From: stevev@hexadecimal.uoregon.edu
>>> To: stevev@uoregon.edu
>>> Subject: example
>>>
>>> .
250 2.0.0 l1EKu60m023771 Message accepted for delivery
>>> QUIT
221 2.0.0 smtp.uoregon.edu closing connection

Common SMTP commands

● EHLO (Extended HeLO)
– If SMTP greeting includes the substring
ESMTP, EHLO asks for ESMTP capabilties

● MAIL From:<sender>
– Specify “envelope sender” (not necessarily

same as From: header) used to route
bounces

● RCPT To:<recipient>
– Specifies recipient (may be used more than

once)

Common SMTP commands
(cont)

● DATA
– Begins transfer of actual message content

● QUIT
– Completes SMTP transaction

● STARTTLS (after EHLO)
– Negotiate SSL/TLS (session restarts)

● AUTH <method> (after EHLO)
– Attempt user authentication with specified

method

SMTP responses

● General form (always starts with 3 digits)
– 999 comment text

● First digit is general status
– 2: OK, action completed
– 3: OK, continue
– 4: Temporary error, try again later
– 5: Permanent error, don't try again

● Remaining digits provide more detail;
comment may start with 9.9.9 extended
status code for even more detail

MTA vs. MSA SMTP

● MTA SMTP operates on TCP port 25
● MSA SMTP operates on TCP port 587
● MSA mode is specifically intended for

user agent message submission
– Can be configured with different behavior like

required TLS encryption or authentication, or
different acceptance and relaying rules

● Ideally port 25 should just be for inter-
MTA traffic and user agents should use
only port 587, but some still use port 25

LDA (Local Delivery Agent)

● Delivers a message into the mail store for
a specified user

● More sophisticated LDAs (such as
procmail) can do user-configurable
delivery to alternate locations (such as
different folders, pipes, /dev/null,
forwarding) based on inspection of
message content

RFC 822 message format

● Internet email messages use a
conventional format originally defined in
RFC 822 (also used for other things like
USENET, HTTP)

● Messages consist of headers and body
– headers: header-name: data
– multi-line headers indent lines with

whitespace
– body starts after blank line, free format

(although lines should be <1000 chars)

Common headers

● From:
– header sender, may not match real sender

● To:
– header recipient, may not match real

recipient

● Subject:
● Date:
● Message-ID:

– (ideally) globally unique message identifier

Common headers (cont)

● Received:
– each MTA which processes message inserts

one with tracking information

● Return-Path:
– original envelope sender

● MIME-Version:, Content-type:
– MIME headers

● X-*
– nonstandard application-specific headers

The Mail Store

● Message storage for users
● Each user at least has a primary inbox

folder (default location for delivery and
message retrieval) and may also have
access to additional folders

● The mail store format is probably the
biggest influence on performance of your
mail system

● All components that interact with the mail
store must use compatible locking

Mail access with POP

● POP (Post Office Protocol) is the original
protocol for remote mail access (POP3 is
latest protocol revision)

● Supports only a single inbox folder
● Each mail check requires login, scanning

folder to index messages and identify
new messages, logout

● Messages can be downloaded and
(optionally) deleted

POP session example
+OK Dovecot ready.
>>> user stevev
+OK
>>> pass password
+OK Logged in.
>>> stat
+OK 1 403
>>> retr 1
+OK 403 octets
Content-Type: text/plain; charset="us-ascii"
Content-Disposition: inline
Content-Transfer-Encoding: 7bit
MIME-Version: 1.0
X-Mailer: AlphaMail 1.0.22
Message-ID: <1164891521.43097.alphamail@mailapps1.uoregon.edu>
X-Originating-Ip: 71.236.255.164
From: "" <stevev@uoregon.edu>
Reply-To: "" <stevev@uoregon.edu>
To: stevev@uoregon.edu
Subject: test
Date: Thu, 30 Nov 2006 04:58:41 -0800

test
.
>>> quit
+OK Logging out.

Mail access with IMAP

● IMAP (Internet Message Access Protocol)
was originally developed for the PINE mail
client, but is now a predominant client
access protocol

● Supports multiple folders
● Supports persistent connections
● Oriented towards leaving mail in the

server repository for access from multiple
locations and clients

IMAP session example

* OK Dovecot ready.
>>> 1 login stevev password
1 OK Logged in.
>>> 2 select inbox
* FLAGS (\Answered \Flagged \Deleted \Seen \Draft)
* OK [PERMANENTFLAGS (\Answered \Flagged \Deleted
\Seen \Draft *)] Flags permitted.
* 1 EXISTS
* 0 RECENT
* OK [UIDVALIDITY 1157275920] UIDs valid
* OK [UIDNEXT 2] Predicted next UID
2 OK [READ-WRITE] Select completed.
>>> 3 logout
* BYE Logging out
3 OK Logout completed.

MUAs (Mail User Agents)

● Provide a user interface for viewing and
composing mail messages

● Standalone MUA applications include
Outlook, Thunderbird, Eudora, PINE, mutt,
and many, many more

● Web-based email access has become
very popular and common

● MUA behavior is often what causes your
mail performance problems

Implementation concerns for
MTAs and SMTP

Mail relaying

● Mail relaying is the acceptance of
messages from one network location for
transfer to another network location (as
opposed to origination of email or final
delivery to a local recipient)

● Originally mail relaying was not usually
restricted, but spammers exploited
unrestricted relays and restriction of
relaying has since become a necessity

Relaying restrictions

● Domain of envelope sender
– Risky since any spammer could choose a

domain that let him relay

● Network address of client
– Simple for clients that lived in the permitted

ranges, but difficult for roaming clients

● SMTP Authentication
– ESMTP AUTH could be used to authenticate to

SMTP in much the same way clients
authenticated for POP or IMAP

SMTP AUTH

● Clients can supply a username/password
pair to the SMTP server, or enage in some
challenge/response interaction, to obtain
relaying privileges

● Methods commonly supported in clients
(AUTH PLAIN and AUTH LOGIN) use
base64-encoding for authentication data
(not encrypted! not network-safe!)

● AUTH methods with encryption are not
commonly supported

STARTTLS

● STARTTLS provides optional SMTP session
encryption based on SSL/TLS

● Clients have to support ESMTP and can
issue STARTTLS if the ESMTP server
advertises STARTTLS as a capability in
response to EHLO

● Restarts SMTP session with encrypted
traffic once established, so it prevents
sniffing of SMTP protocol exchange and
message data

STARTTLS saves AUTH

● You'd like to use AUTH to allow users to
authenticate for relaying, but then they'd
leak their passwords

● Clients that support AUTH usually support
STARTTLS too

● Set up your MSA (but not MTA) port to
advertise and require AUTH after
STARTTLS

● Roaming and remote users are happier,
and have somewhat better privacy too

TLS && AUTH Mini-howto

● Sendmail
– define(`confAUTH_OPTIONS', `p')

● Postfix
– smtpd_tls_auth_only = yes

● Exim
– auth_advertise_hosts = ${if
eq{$tls_cipher}{}{}{*}}

Spam

● Unsolicited Bulk Email
– not requested by recipients, sent to multiple

recipients

● Many sites report >90% of their incoming
email is spam, so it becomes a big scaling
problem for large sites

● You're stuck with trying to use technical
means to solve a social problem

● There are no perfect solutions, and the
imperfect ones keep changing

Characteristics of spam

● Most is now coming from a huge pool of
randomly-selected proxies, typically
compromised Windows systems

● A lot of spam uses forged sender
addresses
– Any approach which might return spam to

forged addresses should be avoided

● Some still comes from relatively fixed
locations that are easier to block

Considerations for spam
mitigation

● Should be driven by user needs and
organizational considerations

● Blocking vs. filtering
– Blocking: refuse spam at SMTP time
– Filtering: accept spam, but tag or divert it

based on content

● Should allow user customization
– Opt-in or opt-out for system-wide blocking
– Filtering mechanisms are often customizable,

but not always easily

Preventing spam from your site

● Have abuse@, postmaster@ contact
addresses that are not blocked to
ensure you can be notified of issues

● Prevent open relays, open proxies
● Watch for vulnerable web applications

– Lots of PHP crud seems to be easily exploited
for spam injection

– Avoid formmail scripts that take addresses
from form input

● Monitor message volumes, mail queues

Blocking: DNSBLs

● DNS BlackLists
– Lists of IP addresses accessible by DNS

lookups in special zones

● Maintainers have many listing policies
– Known spam sources
– Spammer-controlled networks
– Dynamically-assigned (non-server) IPs
– Examine policies, choose carefully!

● DNSBLs are about the only approach that
reduces spam without adding server load

Blocking: DNSBLs (cont)

● May need to use local access control
features to override DNSBL listings
(“whitelisting”)

● Some DNSBLs allow you to download
copies of their zone data (perhaps for a
fee) to reduce lookup latency
– Zones can be very large (>106 entries) and

take significant resources to serve

● Spammer use of zombies/proxies is
largely a reaction to DNSBLs

Blocking: Local access control

● Supplement or override DNSBL coverage
● Can be labor-intensive to manage
● Local user opt-in or opt-out of blocking

– Sendmail: FEATURE(delay_checks),
Spam:user@ entries in access_db

– Postfix:
http://www.postfix.org/RESTRICTION_CLASS_README.html

– Exim: recipient_reject_except =
<address list> (may also refer to external
file or database)

http://www.postfix.org/RESTRICTION_CLASS_README.html

Blocking: “Greet-pause”

● Proper SMTP clients are supposed to wait
for SMTP banner before proceeding

● Pause before displaying banner, reject
clients that send data before banner

● 30-second limit imposed by RFCs
● Interferes with some real sites (like

Gmail)
● Slows down processing of email
● Spammers are already adjusting for this

Blocking: Greylisting

● Spamware often doesn't implement full
MTA behavior, like queuing

● Defer initial attempt to deliver with 4xx
reply, accept on subsequent retry

● Requires keeping a database to
remember connection attempts

● Successful clients can also be
remembered and not delayed

● Slows down mail processing a lot,
depends on queuing behavior of client

Content filtering

● Examine message contents for spam or
malware indicators
– Can be applied during DATA phase using

Sendmail/Postfix milters

● Can be very resource-intensive
– SpamAssassin uses more CPU than any other

component in delivery process

● Adaptable and customizable
● Also easily worked around by spammers

(image spam, random text)

Spam mitigation methods you
should avoid

● Challenge-response
– Unknown senders sent back a challenge,

have to respond to get message to recipient
– Spam sender forgery means lots of innocent

third parties get useless challenges
– Even valid senders find it annoying

● SMTP Callbacks
– Attempt to connect back to purported

sender's SMTP server to verify sender
– Once again, problematic because of forgery

My personal favorite methods
for spam mitigation

● Use an appropriate DNSBL to keep spam
from getting in to your mail system
– spamhaus.org is conservative and effective

● Provide content filtering for what gets in
– ClamAV is very effective for virus filtering and

some phishing spam, clamav-milter can
reject at end of SMTP DATA phase to minimize
backscatter

– SpamAssassin seems to be leading spam
filtering solution, with many content
heuristics and trainable Bayesian filtering

What if your site is blocked?

● Many DNSBLs provide information about
their listings with evidence

● Remote sites that are blocking you will
hopefully tell you why

● Make sure you fix any spam problems
that caused blocking

● Other things that might cause blocking:
– nonexistent or inconsistent rDNS
– RFC-compliance issues

Mail queuing

● Email is designed to be store-and-
forward, to handle temporary delivery
problems

● Mail that can't be delivered immediately
is placed in a queue for later retries

● Large sites can carry large queues
● Large site or network outages can greatly

increase your queue

Handling large mail queues

● Typical queue defaults hold messages for
five days before giving up
– You could reduce this a little

● Most MTAs are configurable for multiple
queues with different policies
– Simple policy retries at fixed intervals
– Muliple queues can implement different

intervals or an exponential-backoff policy

● Queue items are usually text files that
can be managed by hand or with scripts

Mailing list management

● Use mailing list management software
that provides for subscription
confirmation and user subscription
management

● Mailing lists generate almost entirely
outbound traffic; you may want to use a
separate MTA for the mailing list tuned to
its traffic patterns

Refuse-or-deliver philosophy

● Messages should be accepted for
delivery, or refused at SMTP time

● Other dispositions cause problems
– Discarding silently leaves a sender with the

impression the mail was delivered when it
wasn't

– Returning a non-delivery notification after
acceptance can send messages to forged
addresses (“backscatter”) or cause loops

● When a message isn't accepted, a valid
sender can find out

Bounce messages

● Non-delivery notifications (“bounce
messages”) are returned by MTAs to a
sender when a message is undeliverable

● Real users who are using an MTA can get
valid bounces

● Spamware/malware in communication
with an MTA tend not to generate a
bounce when they fail to deliver
– Refusing at SMTP time avoids “backscatter”

of delivery notifications to forged senders

Bounce scenarios

MTA Your
MTA

1: attempt delivery

2: SMTP refusal3: bounce

Your
MTA

LDA

1: attempt delivery

2: delivery error3: bounce

Mail user
agent or

spamware

1: attempt delivery
Your
MTA

2: SMTP refusal

(nothing)

DON'T DO THIS:

Your
MTA

bounce

something unwanted

Avoid this

Avoiding undesirable bounces

● Refuse unwanted messages during SMTP
with 550 status
– Blocked sender, unknown/invalid user at RCPT
To: (so recipients can opt out of blocking)

– Spam/virus content at end of DATA

● Try to avoid local delivery errors that
cause your MTA to send bounces

● Spam filtering or virus scanning should
not return messages or send notifications
to (usually forged) senders

Mail forwarding

● Users often want to forward mail
– funnel mail from multiple accounts to one
– get mail in old account to new account

● Most MTAs support user-controlled
forwarding
– .forward file checked for forward address

● Some LDAs also do forwarding
– procmail: !forward@address.com

Mail forwarding issues

● .forward-style forwarding is usually safer
– MTAs apply null-sender checking for bounces,

Received: header thresholds to prevent
indefinite looping

● LDA forwarding can be dangerous
– LDA forwarding to a non-working destination

may create a mail loop, especially if no
attempt is made to match that condition

● SPF vs. traditional forwarding
– same-sender forwarding blocked by SPF

Implementation concerns for
LDAs

● Good to have one with configurable
delivery behavior, especially for content
filtering
– Users can also do their own mail sorting
– I like procmail, although it is ugly to configure

● Quotas
– Good: prevents one mailbombed user from

hosing everyone else
– Bad: causes bounces and user confusion for

over-quota users

Mail Store Implementations

“mbox” Mail Store

● Earliest and most common mail store
format

● One file contains multiple messages
separated by “From_” lines
– From stevev@uoregon.edu Sun Feb 18 18:00:00 2007

● Standard inbox location for users is
/var/mail/$USER, but can be changed to
spread those over more directories/disks

● Additional folders normally placed in
user's home directory

mailto:stevev@uoregon.edu

mbox locking

● Changes to mbox files must be serialized
and exclusive to avoid corruption

● Exclusion locking traditionally done with
“dot-lock” files
– Create temp file with random unique name
– Attempt to link temp file to folder name with

“.lock” appended (/var/mail/stevev.lock)
– Remove temp file

● OS-level file locking (fcntl(), flock())
can also be used in addition to dot-locks

mbox problems

● Large folders become unwieldy to handle
– Getting a folder index requires reading and

parsing the entire folder
– Updates to delete messages, modify headers,

etc. usually involve complete rewriting of
folder file

● Lock contention becomes problematic
(clients fight with delivery, or high-rate
delivery fights with itself) because some
updates lock a folder for a long time

Maildir Mail Store

● Store individual messages in individual
files in a subdirectory

● Standard Maildir format uses three
subdirectories in $HOME/Maildir:
– cur/ holds current folder contents
– new/ holds newly-delivered mail
– tmp/ used for message delivery and deletion

● Maildir++ supports multiple folders
– Subdirectories like $HOME/Maildir/.folder
– Path flattening: sub/folder => .sub.folder

Maildir Mail Store (cont)

● Delivery is lock-free, based on unique
filenames
– 1171963019.6003_0.mserv5
– (UNIX time).(PID, serial).(hostname)

● A new message file is initially created in
tmp/, then moved to new/ when it is fully
written out

● Access renames message files from new/
to cur/ appending status flags to name
– 1171936019.6003_0.mserv5:2,S

Maildir locking

● Almost unnecessary, although some
servers implement folder-level locking for
extra safety

● Done at folder level when updates are
done, to ensure other clients get a
consistent view of folder contents

Maildir and large folders

● Maildir can do much better than mbox in
many cases, if underlying OS and
filesystem is good at handling lots of
small files and fast at directory traversal
and open/read/close transactions

● Many benefits come from many kinds of
updates being faster file link/unlink or
renaming, rather than slow rewriting of
large files

● Tends to interact better with NFS

Database Mail Store

● Few current UNIX systems implement
these

● Advantages from databases:
– Indexing and access can be very fast
– Can save space by linking a single copy of a

message to multiple recipients
– Databases tend to have solid record-locking

primitives

Database Mail Store (cont)

● Disadvantages from databases
– Data structures are complex and fragile;

damage can cause widespread data loss or
corruption

– Require more specialized tools for backup
and message manipulation, compared to
mbox or Maildir which can use more basic file
manipulation tools

● Still more of a research topic than a
common solution, although performance
of trial implementations is encouraging

Putting a Mail Store on NFS

● Delivering mail into NFS was traditionally
avoided
– Tended to be slower and higher-latency than

direct-attached storage
– Less stable than direct-attached storage
– Locking was unreliable

● NFS got better
– Network speed increasing faster than disk

transfer speed
– Locking somewhat better, and avoidable

Putting a Mail Store on NFS
(cont)

● NFS is about the only storage technology
that allows multiple hosts to access the
same storage concurrently, allowing
parallelization of SMTP, POP, IMAP servers
working on a single mail store

● NFS “toasters” have become fast and
reliable storage devices

● Most really large mail systems have gone
to NFS

POP/IMAP implementation

● Traditional POP and IMAP pass
authentication data in the clear

● Optional TLS commands or secure
authentication methods are not widely
supported in clients

● Standard service ports with required TLS
are well-standardized
– pop3s = TCP port 993, imaps = TCP port 995

● Client support for required TLS is widely
available now, so you should require it

POP/IMAP performance

● POP is transactional (log in, read inbox to
index and check for new messages,
download/delete messages, log out)

● IMAP can be persistent (log in, do
whatever, hang out, do some more, etc.)
making it somewhat less I/O intensive

● Large folders still tend to be a problem
– mbox: lots of file reading
– Maildir: lots of readdir/open/read/close

transactions

POP/IMAP performance (cont)

● Some POP/IMAP daemons support index
caching to speed up indexing phase
– UW IMAP: special “mbx” format that stores

index data at beginning of mbox-like folder
– Dovecot: supports auxiliary index cache files

that store index data for both mbox and
Maildir folders

● Index caching helps both mbox and
Maildir perform better by eliminating
unnecessary folder rescanning

POP/IMAP performance (cont)

I/O

Time

mbox, no indexing

mbox, Dovecot indexing

Maildir

IMAP shared access

● More and more, people want to access
mail from multiple locations

● This often results in multiple clients
making overlapping accesses to the same
folders and “lockfighting”

● Some clients open multiple sessions on
the same folder!

● Maildir is about the only thing that helps
avoid problems that result from these
behaviors, but not completely

Web email clients

● Popular for ease of use and flexibility of
access

● Generally like other IMAP client, but often
more resource-intensive
– Lots of quick login/<single command>/logout

transactions caused by each web page view

● Load on your IMAP servers can be
reduced with an IMAP proxy in front of
web email system, or web email system
with integrated IMAP session caching

Techniques for high availability
and growth

Backup MX hosts

● Traditional method for providing higher
reliability for mail transfer

● DNS has a special MX resource record
indicating cost and intended SMTP host

● SMTP protocol says to try multiple MXes
for a domain in order from lowest to
highest cost (or pick at random from
those with same cost) until success

● MTAs (but not all MUAs) can be directed
to alternate servers when one is down

Problems with backup MXes

● All MXes for a domain need to be
configured with exactly the same SMTP-
time behavior (blocking, known users) or
they can be used to inject spam or
generate backscatter

● MTAs have to time out (delays of
minutes) trying to contact a nonworking
MX before trying the next

● Having equal-priority MXes doesn't
guarantee fair round-robin behavior

Load-balancing SMTP

● Load-balancing works well with SMTP due
to relatively short transactional nature of
SMTP sessions

● Load-balancer can detect and remove a
nonfunctional SMTP server from use
faster than MTAs time out or DNS updates
propagate

● Reduces visible downtime to MUAs
● Load-balancing policy is completely under

your control

Issues with load-balancing
SMTP

● You still have to ensure consistent SMTP-
time behavior across all servers
– Configuration management tools to automate

and synchronize updates help here

● Mail queue items distributed across
multiple hosts
– If a host is lost, you might also lose its queue
– Sharing queue across hosts is problematic

● Centralized log collection

Load-balancing POP and IMAP

● Main concern is reliable exclusion locking
– User sessions often distributed across

multiple hosts in server pool
– Maildir helps by removing most need for

locking and reducing lock durations

● If you're using NFS (you almost have to):
– noac (no attribute caching) mount option

ensures NFS clients see consistent file states
– fcntl() locking tends to be more NFS-safe
– Do same things on SMTP servers

Load-balancing high-availability
architecture example

load-balancer
backup

load-balancer

SMTP SMTP. . . POP/IMAPPOP/IMAP . . .

NFS
server

Backup
NFS

server

Auth server

(RADIUS, LDAP)

Techniques for growth

● Load-balancing of SMTP, POP, IMAP for
parallelization (not just availability)

● Distribute mail store across multiple
storage backends
– /home1 on nfs1, /home2 on nfs2, etc.

● LDAP (also set up for high-availability) for
centralized authentication, fields to
handle user mail routing and service
routing

Case studies

“Brownouts”

● Older, traditional mail system with mbox-
format inboxes in /var/mail/user

● ~15,000 user accounts
● System “browns out” at midday on busy

days; delivery and access become slow
● I/O on /var/mail disk actually goes down

during brownouts
● System recovers when demand falls off

“Brownouts” (cont)

● Why? Dot-locking in single directory
becomes bottlenecked on OS serialization
of directory updates

● Solution: Relocated inboxes to home
directories (~user/.mail)
– Split I/O across multiple home directory disks,

increasing all performance
– Users no longer contend with everyone else

for inbox locks
– Did require coordinated reconfiguration of

LDA, POP, IMAP, UNIX shell MUAs

Maildir conversion

● Biggest, scariest system administration
project I've ever been involved with
– 40,000 users, 50 million messages, 1.6 TB,

lots of unhappy people if done badly

● Motivated by chronic problems with mbox
performance and lock contention issues
– Users with >100MB folders
– MUAs opening multiple sessions on folders

and fighting with themselves
– Stale NFS lock issues

Maildir conversion goals

● Goal: All messages accessible by POP or
IMAP should remain accessible after
conversion
– Subgoal: POP and IMAP become only

supported access methods after conversion

● How do you find all that mail when it's
scattered all over home directories?
– We were lucky and clever: After previously

converting to Dovecot with mbox indexing,
index files could be used to find accessed
folders

Maildir conversion: how to turn
mbox into Maildir?

● mb2md
– Perl script written by people who did similar

conversion
● http://batleth.sapienti-sat.org/projects/mb2md

– Splits mbox folder out into Maildir, including
parsing headers for message status flags

– Can also process all mbox folders in a
subdirectory

● Chose Maildir++ layout, installed test
POP/IMAP daemons set up for Maildir,
converted some willing victims users

Per-user Maildir conversion

● Always convert ~user/.mail (standard
home directory inbox)

● Always convert standard ~user/mail
folder directory

● Find Dovecot-created .imap index
directories containing index files, convert
corresponding folder for each index file
– Many users had folders outside

recommended ~user/mail directory

● Clean up: remove converted mboxes

Maildir conversion: outage
planning

● For maximum safety we wanted to avoid
changes to stored messages during
conversion, but this meant disabling mail
services for however long it took

● Ran benchmarks by converting existing
mail to scratch location (also validated
automated conversion methodology)

● Benchmarks showed some benefits from
parallelization, confident of <2 days
conversion time (actually took ~26 hours)

Maildir conversion: the big day
arrives

● Raised maxfiles setting in NetApp file
server to accommodate Maildir
– trial conversions showed average message

size of 32 kB, used to set global space::files
ratio

● Turn off POP and IMAP servers
● Hide procmail from sendmail

– Sendmail leaves messages destined for local
users in queue if it can't exec LDA

– Also raised Timeout.queuewarn to suppress
“not delivered in 4 hours” warnings

Maildir conversion: the big day
arrives (cont)

● Also create snapshots of home directory
volumes in case of backout

● Disable user quotas (conversion
temporarily more than doubles space
usage for a user)

● Run per-user conversion script on a few
more test users and validate carefully

● Fire off batch conversions spread over 8
hosts

● Wait . . .

Maildir conversion: post-
conversion

● Turn on quotas with somewhat modified
quota limits
– 25% space increase for fragmentation,

greatly increased file quotas

● Re-enable procmail configured for Maildir
delivery
– DEFAULT=$HOME/Maildir/

● Flush bulging mail queues
● Re-enable POP/IMAP with Maildir

configuration

Maildir conversion: interesting
problems

● Manual conversion/cleanup for people
with odd or nonstandard configurations
– procmail sorting to Maildir++ folders instead

of mbox folders
– Mail that hadn't been converted because it

hadn't been accessed/indexed by Dovecot

● Nasty e1000 driver bug tickled by new
NFS traffic patterns with Maildir
– Interfaces on POP/IMAP servers would shut

down due to packet rate and memory stress
– Ultimately had to install locally-built driver

Maildir conversion: the
aftermath

● Goal reached: 99+% of users noticed no
difference after conversion

● Really did eliminate issues with lock
contention and NFS

● Performance is mainly better, but I/O load
on NFS server turned into CPU load from
higher rate of NFS requests

 1

High-Capacity Email Systems

Steve VanDevender
University of Oregon

 2

Goals of this tutorial

● Present a comprehensive overview of
email systems (transmission, delivery,
access)

● Discuss issues important to large email
systems (efficiency, interoperability,
abuse prevention)

● Discuss factors that affect email system
performance and ability to handle growth

 3

Overview

● Introduction: Email system architecture,
components, and protocols

● Implementation considerations for
components of large email systems

● Techniques for high availability and
growth

● Case studies

 4

Introduction: Mail System
Architecture, Components, and

Protocols

 5

Email system block diagram

MTA LDA

POP

IMAP

Other
MTAs

MUA
Mail
Store

Key:

MTA: Mail Transfer Agent

LDA: Local Delivery Agent

POP: Post Office Protocol

IMAP: Internet Message Access Protocol

MUA: Mail User Agent

 6

MTA (Mail Transfer Agent)

● Routes email based on recipient
information

● Common MTA software: Exim, Postfix,
Sendmail

● Mail destined for local users is passed to
LDA (Local Delivery Agent)

● Mail to remote users is passed to another
MTA using SMTP (“Simple” Mail Transfer
Protocol)

Exim: http://www.exim.org
Postfix: http://www.postfix.org
Sendmail: http://www.sendmail.org

There are lots of other possibilities; I list these
as the leading open-source options that are
commonly used and still being developed.

If you're wondering why qmail isn't on the list,
it's because it has significant licensing
concerns, requires a large number of third-
party patches to provide the same
functionality as other options, and has some
default behaviors (like accept-then-bounce)
that are undesirable.

 7

SMTP (Simple Mail Transfer
Protocol)

● Defined in RFC 2821 (update of original
RFC 821)

● Simple, text-based protocol
– Four-letter commands (usually) with

arguments (HELO/EHLO, MAIL From:, RCPT
To:, DATA, QUIT)

– Three-digit status codes in response to
commands, with optional text comments

● Essentially the only network protocol for
email transmission on the Internet

 8

SMTP example
220 smtp.uoregon.edu ESMTP Sendmail 8.13.8/8.13.8; Wed, 14 Feb 2007 12:56:06 -0800
>>> EHLO hexadecimal.uoregon.edu
250-smtp.uoregon.edu Hello hexadecimal [128.223.142.97], pleased to meet you
250-ENHANCEDSTATUSCODES
250-PIPELINING
250-EXPN
250-VERB
250-8BITMIME
250-SIZE 10485760
250-DSN
250-ETRN
250-AUTH PLAIN LOGIN
250-DELIVERBY
250 HELP
>>> MAIL From:<stevev@hexadecimal.uoregon.edu> SIZE=342 AUTH=<>
250 2.1.0 <stevev@hexadecimal.uoregon.edu>... Sender ok
>>> RCPT To:<stevev@uoregon.edu>
250 2.1.5 <stevev@uoregon.edu>... Recipient ok
>>> DATA
354 Enter mail, end with "." on a line by itself
>>> From: stevev@hexadecimal.uoregon.edu
>>> To: stevev@uoregon.edu
>>> Subject: example
>>>
>>> .
250 2.0.0 l1EKu60m023771 Message accepted for delivery
>>> QUIT
221 2.0.0 smtp.uoregon.edu closing connection

Input to the session is prefixed with >>> and in
bold.

EHLO is used so that the ESMTP capabilities will
be listed.

Otherwise this is just a minimal example of how
a message might be passed from one MTA to
another.

 9

Common SMTP commands

● EHLO (Extended HeLO)
– If SMTP greeting includes the substring
ESMTP, EHLO asks for ESMTP capabilties

● MAIL From:<sender>
– Specify “envelope sender” (not necessarily

same as From: header) used to route
bounces

● RCPT To:<recipient>
– Specifies recipient (may be used more than

once)

In ESMTP MAIL From: and RCPT To: may also
accept additional option specifications after
the addresses, Many of these are used to
request non-default DSN (Delivery Status
Notification) behavior.

 10

Common SMTP commands
(cont)

● DATA
– Begins transfer of actual message content

● QUIT
– Completes SMTP transaction

● STARTTLS (after EHLO)
– Negotiate SSL/TLS (session restarts)

● AUTH <method> (after EHLO)
– Attempt user authentication with specified

method

RSET will also reset the session to the state just
after HELO/EHLO. Sendmail, at least, can also
list its commands when given HELP and even
let you view descriptions of its commands with
HELP <command>.

 11

SMTP responses

● General form (always starts with 3 digits)
– 999 comment text

● First digit is general status
– 2: OK, action completed
– 3: OK, continue
– 4: Temporary error, try again later
– 5: Permanent error, don't try again

● Remaining digits provide more detail;
comment may start with 9.9.9 extended
status code for even more detail

RFC 2821 lists the basic response codes for
SMTP. RFC 1893 lists the extended response
codes.

 12

MTA vs. MSA SMTP

● MTA SMTP operates on TCP port 25
● MSA SMTP operates on TCP port 587
● MSA mode is specifically intended for

user agent message submission
– Can be configured with different behavior like

required TLS encryption or authentication, or
different acceptance and relaying rules

● Ideally port 25 should just be for inter-
MTA traffic and user agents should use
only port 587, but some still use port 25

Microsoft provides an SMTP-over-SSL service in
Exchange on TCP port 465. (This is different
from STARTTLS in that SSL negotiation is
mandatory at session-open time, as in HTTPS.)
Unfortunately they never actually registered
TCP port 465 with the IANA and it is allocated
to another somewhat obscure routing protocol
URD, which also has the property that any
router that uses URD intercepts any TCP port
465 traffic that passes through it.

Most MTAs will let you configure SMTP-over-SSL
on port 465 but because of the behavior of
URD some users may find it doesn't work if
they're behind a URD-enabled router.

 13

LDA (Local Delivery Agent)

● Delivers a message into the mail store for
a specified user

● More sophisticated LDAs (such as
procmail) can do user-configurable
delivery to alternate locations (such as
different folders, pipes, /dev/null,
forwarding) based on inspection of
message content

Traditional UNIX systems had a /bin/mail that
was frequently used as the Sendmail LDA.

Sendmail also bundles a basic mail.local LDA
(which also supports LMTP, an SMTP-like
protocol for interacting with the LDA).

Postfix also bundles an LDA “local”.

Procmail has a really ugly configuration syntax
but is very powerful and flexible. It also
supports mbox, MH, and Maildir delivery so it
is useful in variety of installations.

 14

RFC 822 message format

● Internet email messages use a
conventional format originally defined in
RFC 822 (also used for other things like
USENET, HTTP)

● Messages consist of headers and body
– headers: header-name: data
– multi-line headers indent lines with

whitespace
– body starts after blank line, free format

(although lines should be <1000 chars)

 15

Common headers

● From:
– header sender, may not match real sender

● To:
– header recipient, may not match real

recipient

● Subject:
● Date:
● Message-ID:

– (ideally) globally unique message identifier

 16

Common headers (cont)

● Received:
– each MTA which processes message inserts

one with tracking information

● Return-Path:
– original envelope sender

● MIME-Version:, Content-type:
– MIME headers

● X-*
– nonstandard application-specific headers

 17

The Mail Store

● Message storage for users
● Each user at least has a primary inbox

folder (default location for delivery and
message retrieval) and may also have
access to additional folders

● The mail store format is probably the
biggest influence on performance of your
mail system

● All components that interact with the mail
store must use compatible locking

 18

Mail access with POP

● POP (Post Office Protocol) is the original
protocol for remote mail access (POP3 is
latest protocol revision)

● Supports only a single inbox folder
● Each mail check requires login, scanning

folder to index messages and identify
new messages, logout

● Messages can be downloaded and
(optionally) deleted

It's great (from the server administrator's point
of view) if you can get your users to do the
traditional download-and-delete behavior of
POP but it's uncommon for people to do that
any more, especially if they also want to use a
webmail system (which likely uses IMAP) for
alternate access to their mail.

 19

POP session example
+OK Dovecot ready.
>>> user stevev
+OK
>>> pass password
+OK Logged in.
>>> stat
+OK 1 403
>>> retr 1
+OK 403 octets
Content-Type: text/plain; charset="us-ascii"
Content-Disposition: inline
Content-Transfer-Encoding: 7bit
MIME-Version: 1.0
X-Mailer: AlphaMail 1.0.22
Message-ID: <1164891521.43097.alphamail@mailapps1.uoregon.edu>
X-Originating-Ip: 71.236.255.164
From: "" <stevev@uoregon.edu>
Reply-To: "" <stevev@uoregon.edu>
To: stevev@uoregon.edu
Subject: test
Date: Thu, 30 Nov 2006 04:58:41 -0800

test
.
>>> quit
+OK Logging out.

This simple session illustrates retrieving (but not
deleting!) a single new message.

DELE is the POP command for deleting
messages.

 20

Mail access with IMAP

● IMAP (Internet Message Access Protocol)
was originally developed for the PINE mail
client, but is now a predominant client
access protocol

● Supports multiple folders
● Supports persistent connections
● Oriented towards leaving mail in the

server repository for access from multiple
locations and clients

 21

IMAP session example

* OK Dovecot ready.
>>> 1 login stevev password
1 OK Logged in.
>>> 2 select inbox
* FLAGS (\Answered \Flagged \Deleted \Seen \Draft)
* OK [PERMANENTFLAGS (\Answered \Flagged \Deleted
\Seen \Draft *)] Flags permitted.
* 1 EXISTS
* 0 RECENT
* OK [UIDVALIDITY 1157275920] UIDs valid
* OK [UIDNEXT 2] Predicted next UID
2 OK [READ-WRITE] Select completed.
>>> 3 logout
* BYE Logging out
3 OK Logout completed.

This is about as much IMAP as I know. The
protocol is really quite complicated. Every
command is prefixed with a tag that is
included in server responses so a response
can be associated with its command. The
server is allowed to respond to commands
asynchronously and out of order. There are
also mechanisms for multi-line commands and
responses and quoting, such as {n} to
indicate n literal characters follow.

 22

MUAs (Mail User Agents)

● Provide a user interface for viewing and
composing mail messages

● Standalone MUA applications include
Outlook, Thunderbird, Eudora, PINE, mutt,
and many, many more

● Web-based email access has become
very popular and common

● MUA behavior is often what causes your
mail performance problems

As will be discussed later, in particular several
common MUAs (Mac OS X Mail.app, Outlook)
attempt multiple simultaneous sessions on the
same folder.

Also, users who have large folders and who
make frequent mail checks (once a minute or
more frequently) can really hammer on your
POP or IMAP server's I/O.

 23

Implementation concerns for
MTAs and SMTP

 24

Mail relaying

● Mail relaying is the acceptance of
messages from one network location for
transfer to another network location (as
opposed to origination of email or final
delivery to a local recipient)

● Originally mail relaying was not usually
restricted, but spammers exploited
unrestricted relays and restriction of
relaying has since become a necessity

Sendmail 8.9.0 (released in May 1998) was the
first version that restricted mail relaying by
default. Previous versions defaulted to
unrestricted relaying and at least for Sendmail
8.8 there were various add-on rulesets to
restrict relaying to prevent exploitation by
spammers.

 25

Relaying restrictions

● Domain of envelope sender
– Risky since any spammer could choose a

domain that let him relay

● Network address of client
– Simple for clients that lived in the permitted

ranges, but difficult for roaming clients

● SMTP Authentication
– ESMTP AUTH could be used to authenticate to

SMTP in much the same way clients
authenticated for POP or IMAP

 26

SMTP AUTH

● Clients can supply a username/password
pair to the SMTP server, or enage in some
challenge/response interaction, to obtain
relaying privileges

● Methods commonly supported in clients
(AUTH PLAIN and AUTH LOGIN) use
base64-encoding for authentication data
(not encrypted! not network-safe!)

● AUTH methods with encryption are not
commonly supported

Most other AUTH methods besides PLAIN and
LOGIN require maintaining a separate
authentication database or hooking into
infrastructure like Kerberos; PLAIN and LOGIN
are typically implemented to work against
standard UNIX passwords (or RADIUS or LDAP
authentication).

 27

STARTTLS

● STARTTLS provides optional SMTP session
encryption based on SSL/TLS

● Clients have to support ESMTP and can
issue STARTTLS if the ESMTP server
advertises STARTTLS as a capability in
response to EHLO

● Restarts SMTP session with encrypted
traffic once established, so it prevents
sniffing of SMTP protocol exchange and
message data

Why optional? For interoperability; normal
SSL/TLS starts with encryption negotiation
before any application data is passed, so an
MTA that didn't understand SSL/TLS would be
unable to communicate with one that required
it. STARTTLS as an ESMTP capability allows
clients that want the functionality to request it
while remaining interoperable with servers
that don't support STARTTLS.

 28

STARTTLS saves AUTH

● You'd like to use AUTH to allow users to
authenticate for relaying, but then they'd
leak their passwords

● Clients that support AUTH usually support
STARTTLS too

● Set up your MSA (but not MTA) port to
advertise and require AUTH after
STARTTLS

● Roaming and remote users are happier,
and have somewhat better privacy too

 29

TLS && AUTH Mini-howto

● Sendmail
– define(`confAUTH_OPTIONS', `p')

● Postfix
– smtpd_tls_auth_only = yes

● Exim
– auth_advertise_hosts = ${if
eq{$tls_cipher}{}{}{*}}

These are just the critical options needed to
ensure that insecure AUTH methods are
offered only after TLS is in effect.

 30

Spam

● Unsolicited Bulk Email
– not requested by recipients, sent to multiple

recipients

● Many sites report >90% of their incoming
email is spam, so it becomes a big scaling
problem for large sites

● You're stuck with trying to use technical
means to solve a social problem

● There are no perfect solutions, and the
imperfect ones keep changing

The definition “unsolicited bulk email” is
intended to be content-neutral (as
“commercial” would not be). “Bulk” means
multiple recipients, although people are
reluctant to define a specific numeric
threshold (partly because if bulk means N,
then you can be sure spammers would
promptly send all messages in batches of N-
1).

Because spam is a social problem, it's important
to remember that there really is no “final
solution”. You can mitigate spam, but you
can't eliminate it.

 31

Characteristics of spam

● Most is now coming from a huge pool of
randomly-selected proxies, typically
compromised Windows systems

● A lot of spam uses forged sender
addresses
– Any approach which might return spam to

forged addresses should be avoided

● Some still comes from relatively fixed
locations that are easier to block

One tactic of spammers who are still using fixed
address ranges (temporarily) is to sign up with
a hosting provider, then use a large set of
randomly-generated domain names for their
hosts and spread spamming activity out over
the address space to reduce the apparent
level of activity from any single address.

 32

Considerations for spam
mitigation

● Should be driven by user needs and
organizational considerations

● Blocking vs. filtering
– Blocking: refuse spam at SMTP time
– Filtering: accept spam, but tag or divert it

based on content

● Should allow user customization
– Opt-in or opt-out for system-wide blocking
– Filtering mechanisms are often customizable,

but not always easily

 33

Preventing spam from your site

● Have abuse@, postmaster@ contact
addresses that are not blocked to
ensure you can be notified of issues

● Prevent open relays, open proxies
● Watch for vulnerable web applications

– Lots of PHP crud seems to be easily exploited
for spam injection

– Avoid formmail scripts that take addresses
from form input

● Monitor message volumes, mail queues

 34

Blocking: DNSBLs

● DNS BlackLists
– Lists of IP addresses accessible by DNS

lookups in special zones

● Maintainers have many listing policies
– Known spam sources
– Spammer-controlled networks
– Dynamically-assigned (non-server) IPs
– Examine policies, choose carefully!

● DNSBLs are about the only approach that
reduces spam without adding server load

Example: When your mail server receives a
client connection from the IP address 10.1.2.3
and is using the (hypothetical)
diespammers.org DNS blacklist, it attempts to
look up the DNS A record for the domain name
3.2.1.10.diespammers.org. This works in a
way analogous to the .in-addr.arpa domain
used for reverse DNS (IP-to-name) mapping.

Most DNS blacklists return A records for
addresses in the range 127.0.0.0/8,
sometimes coded to provide more
information, such as the last octet being a
code for the kind of listing.

 35

Blocking: DNSBLs (cont)

● May need to use local access control
features to override DNSBL listings
(“whitelisting”)

● Some DNSBLs allow you to download
copies of their zone data (perhaps for a
fee) to reduce lookup latency
– Zones can be very large (>106 entries) and

take significant resources to serve

● Spammer use of zombies/proxies is
largely a reaction to DNSBLs

If you lease dialup or DSL space from a provider
who might be listed on a DNSBL, you would
certainly want to whitelist the IPs or
subdomain that belongs to you to prevent
your users from being denied access to your
own mail server.

 36

Blocking: Local access control

● Supplement or override DNSBL coverage
● Can be labor-intensive to manage
● Local user opt-in or opt-out of blocking

– Sendmail: FEATURE(delay_checks),
Spam:user@ entries in access_db

– Postfix:
http://www.postfix.org/RESTRICTION_CLASS_README.html

– Exim: recipient_reject_except =
<address list> (may also refer to external
file or database)

 37

Blocking: “Greet-pause”

● Proper SMTP clients are supposed to wait
for SMTP banner before proceeding

● Pause before displaying banner, reject
clients that send data before banner

● 30-second limit imposed by RFCs
● Interferes with some real sites (like

Gmail)
● Slows down processing of email
● Spammers are already adjusting for this

 38

Blocking: Greylisting

● Spamware often doesn't implement full
MTA behavior, like queuing

● Defer initial attempt to deliver with 4xx
reply, accept on subsequent retry

● Requires keeping a database to
remember connection attempts

● Successful clients can also be
remembered and not delayed

● Slows down mail processing a lot,
depends on queuing behavior of client

 39

Content filtering

● Examine message contents for spam or
malware indicators
– Can be applied during DATA phase using

Sendmail/Postfix milters

● Can be very resource-intensive
– SpamAssassin uses more CPU than any other

component in delivery process

● Adaptable and customizable
● Also easily worked around by spammers

(image spam, random text)

Bayesian statistical classification had a surge of
popularity as a way of doing “trainable” spam
filtering. The basic idea is that statistical
analysis of a body of messages that have
been human-sorted into spam and non-spam
categories can produce criteria that can be
applied to automatic classification. If users
are willing to invest the effort into training
(and occasional retraining) they can often get
good results. Bayesian filtering is usually
ineffective to apply on a system-wide basis
because a large population may have a large
variation in their criteria for spam.

 40

Spam mitigation methods you
should avoid

● Challenge-response
– Unknown senders sent back a challenge,

have to respond to get message to recipient
– Spam sender forgery means lots of innocent

third parties get useless challenges
– Even valid senders find it annoying

● SMTP Callbacks
– Attempt to connect back to purported

sender's SMTP server to verify sender
– Once again, problematic because of forgery

A fundamental problem with applying either of
these on a large scale is that they magnify the
network traffic caused by spam, which is
already the majority of email traffic, making a
bad problem worse. Then directing that extra
traffic to essentially uninvolved third parties
just expands the spam problem even more.

I'm actually pretty lukewarm about things like
greet-pause and greylisting but they don't
magnify the problem of spam the way these
two techniques do.

 41

My personal favorite methods
for spam mitigation

● Use an appropriate DNSBL to keep spam
from getting in to your mail system
– spamhaus.org is conservative and effective

● Provide content filtering for what gets in
– ClamAV is very effective for virus filtering and

some phishing spam, clamav-milter can
reject at end of SMTP DATA phase to minimize
backscatter

– SpamAssassin seems to be leading spam
filtering solution, with many content
heuristics and trainable Bayesian filtering

At my site we use spamhaus.org and njabl.org.
Spamhaus also provides different subzones:

sbl.spamhaus.org: spammers
xbl.spamhaus.org: zombies/proxies
pbl.spamhaus.org: dynamic IPs that shouldn't

be originating mail (as indicated by provider
policies)

zen.spamhaus.org: all of the above
njabl.org has similar subzones but we use

combined.njabl.org

ClamAV: http://www.clamav.net

SpamAssassin: http://spamassassin.apache.org

 42

What if your site is blocked?

● Many DNSBLs provide information about
their listings with evidence

● Remote sites that are blocking you will
hopefully tell you why

● Make sure you fix any spam problems
that caused blocking

● Other things that might cause blocking:
– nonexistent or inconsistent rDNS
– RFC-compliance issues

Example: Spamhaus provides listing data you
can look up by IP address:

http://www.spamhaus.org/query/bl?ip=A.B.C.D

This assumes you're dealing with a DNSBL
maintainer or remote site that wants to be
reasonable, but unfortunately that's not
always the case. Being polite and dealing with
any real spam problems that you might be
having are sometimes all you can do.

Nonexistent reverse DNS (rDNS) means not
having PTR records that can be looked up
from IP addresses.

Inconsistent rDNS means getting a PTR that
can't be looked up to get the original A.

 43

Mail queuing

● Email is designed to be store-and-
forward, to handle temporary delivery
problems

● Mail that can't be delivered immediately
is placed in a queue for later retries

● Large sites can carry large queues
● Large site or network outages can greatly

increase your queue

I'm currently only familiar with Sendmail's
queue system, which uses files in
/var/spool/mqueue:

qfXXXXXX: queue control file (has headers,
other data used by Sendmail for queue
management)

dfXXXXXX: data file containing message body
tfXXXXXX, xfXXXXXX: temporary files used in

queue processing to lock entries, hold working
data

 44

Handling large mail queues

● Typical queue defaults hold messages for
five days before giving up
– You could reduce this a little

● Most MTAs are configurable for multiple
queues with different policies
– Simple policy retries at fixed intervals
– Muliple queues can implement different

intervals or an exponential-backoff policy

● Queue items are usually text files that
can be managed by hand or with scripts

Something I find myself doing in Sendmail once
in a while:

grep -l something qf* |
sed 's/qf\(.*\)/qf\1 df\1/' |
while read qf df

do mv $qf $df /var/tmp/crap
done

This selects Sendmail queue files that contain a
substring “something”, then moves all the
associated queue files to a temporary
directory. This can get rid of spam/mailbomb
items piled up in your queue, but give you a
chance to look over the items before
discarding them.

 45

Mailing list management

● Use mailing list management software
that provides for subscription
confirmation and user subscription
management

● Mailing lists generate almost entirely
outbound traffic; you may want to use a
separate MTA for the mailing list tuned to
its traffic patterns

A couple of common mailing list managers:
Majordomo
(http://www.greatcircle.com/majordmo/),
Mailman
(http://www.gnu.org/software/mailman)

Subscription confirmation (also called
“confirmed opt-in”) typically means returning
a mail message in reply to a subscription
request containing a confirmation token which
is returned by email or accessing a web page.

You can improve mailing list delivery
performance by reducing the number of
recipients per queue item to increase delivery
parallelization (but not too much).

 46

Refuse-or-deliver philosophy

● Messages should be accepted for
delivery, or refused at SMTP time

● Other dispositions cause problems
– Discarding silently leaves a sender with the

impression the mail was delivered when it
wasn't

– Returning a non-delivery notification after
acceptance can send messages to forged
addresses (“backscatter”) or cause loops

● When a message isn't accepted, a valid
sender can find out

Specifically this is about system-wide policy.
Users may have valid reasons for discarding
their own mail (although they should
understand the risks) but if so the choice and
responsibility should be theirs.

 47

Bounce messages

● Non-delivery notifications (“bounce
messages”) are returned by MTAs to a
sender when a message is undeliverable

● Real users who are using an MTA can get
valid bounces

● Spamware/malware in communication
with an MTA tend not to generate a
bounce when they fail to deliver
– Refusing at SMTP time avoids “backscatter”

of delivery notifications to forged senders

The important distinction here is that bounces
are generated by MTAs in response to a
delivery error; your MTA's refusal of a
message won't cause a bounce unless a
remote MTA is in communication with yours.

Bounces are supposed to be sent from the null
sender (MAIL From:<>) to the original
envelope sender (the original MAIL From:
address is used for the RCPT To:) which
indicates that no further bounce should be
generated if this bounce is undeliverable.
Often these double-bounces are delivered to
the postmaster@ alias.

 48

Bounce scenarios

MTA Your
MTA

1: attempt delivery

2: SMTP refusal3: bounce

Your
MTA

LDA

1: attempt delivery

2: delivery error3: bounce

Mail user
agent or

spamware

1: attempt delivery
Your
MTA

2: SMTP refusal

(nothing)

DON'T DO THIS:

Your
MTA

bounce

something unwanted

Avoid this

Another way to look at this is that for the most
part you should return bounces only to your
own users, and if you refuse mail from another
MTA then you should leave the generation of
any bounce message to it.

 49

Avoiding undesirable bounces

● Refuse unwanted messages during SMTP
with 550 status
– Blocked sender, unknown/invalid user at RCPT
To: (so recipients can opt out of blocking)

– Spam/virus content at end of DATA

● Try to avoid local delivery errors that
cause your MTA to send bounces

● Spam filtering or virus scanning should
not return messages or send notifications
to (usually forged) senders

It can be somewhat difficult to prevent bounces
due to local delivery issues like quotas or
permission problems on mail files. Ideally
you'd like the MTA to return an appropriate
4xx or 5xx reply to a remote client, but the
traditional separation between MTA and LDA
functions and the limited interface between
them means that usually the LDA is the only
component that can see those issues, but not
be able to communicate much more than a
delivery success/failure status to the MTA,
which will typically generate a bounce on LDA
failure.

 50

Mail forwarding

● Users often want to forward mail
– funnel mail from multiple accounts to one
– get mail in old account to new account

● Most MTAs support user-controlled
forwarding
– .forward file checked for forward address

● Some LDAs also do forwarding
– procmail: !forward@address.com

 51

Mail forwarding issues

● .forward-style forwarding is usually safer
– MTAs apply null-sender checking for bounces,

Received: header thresholds to prevent
indefinite looping

● LDA forwarding can be dangerous
– LDA forwarding to a non-working destination

may create a mail loop, especially if no
attempt is made to match that condition

● SPF vs. traditional forwarding
– same-sender forwarding blocked by SPF

SPF is an attempt to provide relatively simple
verification that a mail server is authorized to
send mail for a domain via auxiliary DNS
records that indicate which subdomains/IPs
should be sending mail for that domain.

If someone forwards mail through your site that
originated from a domain with SPF records
and is destined for a site that checks SPF, the
forwarded message is rejected because mail
with a sender in that domain is coming
through your mail server which is not on their
SPF list.

This is one of SPF's biggest problems.

 52

Implementation concerns for
LDAs

● Good to have one with configurable
delivery behavior, especially for content
filtering
– Users can also do their own mail sorting
– I like procmail, although it is ugly to configure

● Quotas
– Good: prevents one mailbombed user from

hosing everyone else
– Bad: causes bounces and user confusion for

over-quota users

Mostly procmail is terse.

:0:
^From:.*bob@mainframe.net
bobsmail

which means if the From: header contains
“bob@mainframe.net“ then put it in a folder

named “bobsmail”. Still, you can see why
non-technical people find this a bit daunting.

It's also nice to have a local delivery agent that
can be configured for whatever message store
format you want to use.

 53

Mail Store Implementations

 54

“mbox” Mail Store

● Earliest and most common mail store
format

● One file contains multiple messages
separated by “From_” lines
– From stevev@uoregon.edu Sun Feb 18 18:00:00 2007

● Standard inbox location for users is
/var/mail/$USER, but can be changed to
spread those over more directories/disks

● Additional folders normally placed in
user's home directory

 55

mbox locking

● Changes to mbox files must be serialized
and exclusive to avoid corruption

● Exclusion locking traditionally done with
“dot-lock” files
– Create temp file with random unique name
– Attempt to link temp file to folder name with

“.lock” appended (/var/mail/stevev.lock)
– Remove temp file

● OS-level file locking (fcntl(), flock())
can also be used in addition to dot-locks

Almost everything does dot-locking, which can
also be NFS-safe. The system-call-based
methods might be used to supplement that.
fcntl() is probably the other method you might
want to use since it can also work via NFS and
is more standardized than flock().

 56

mbox problems

● Large folders become unwieldy to handle
– Getting a folder index requires reading and

parsing the entire folder
– Updates to delete messages, modify headers,

etc. usually involve complete rewriting of
folder file

● Lock contention becomes problematic
(clients fight with delivery, or high-rate
delivery fights with itself) because some
updates lock a folder for a long time

MUAs can also interact badly with locking,
especially if they try to open the same folder
multiple times; they either stall on their own
attempts to issue multiple operations, or even
worse fail when the POP/IMAP server returns
an error because of locking.

 57

Maildir Mail Store

● Store individual messages in individual
files in a subdirectory

● Standard Maildir format uses three
subdirectories in $HOME/Maildir:
– cur/ holds current folder contents
– new/ holds newly-delivered mail
– tmp/ used for message delivery and deletion

● Maildir++ supports multiple folders
– Subdirectories like $HOME/Maildir/.folder
– Path flattening: sub/folder => .sub.folder

Observed path-flattening behavior of a
Maildir++ POP/IMAP server:

tr '.' '_'
tr '/' '.'
prepend '.'

So a folder name “foo/bar.baz/quux” turns into
a subdirectory named “.foo.bar_baz.quux”

 58

Maildir Mail Store (cont)

● Delivery is lock-free, based on unique
filenames
– 1171963019.6003_0.mserv5
– (UNIX time).(PID, serial).(hostname)

● A new message file is initially created in
tmp/, then moved to new/ when it is fully
written out

● Access renames message files from new/
to cur/ appending status flags to name
– 1171936019.6003_0.mserv5:2,S

 59

Maildir locking

● Almost unnecessary, although some
servers implement folder-level locking for
extra safety

● Done at folder level when updates are
done, to ensure other clients get a
consistent view of folder contents

 60

Maildir and large folders

● Maildir can do much better than mbox in
many cases, if underlying OS and
filesystem is good at handling lots of
small files and fast at directory traversal
and open/read/close transactions

● Many benefits come from many kinds of
updates being faster file link/unlink or
renaming, rather than slow rewriting of
large files

● Tends to interact better with NFS

Personally I have found that NetApp NFS does
well with Maildir.

Linux ext3fs created with dir_index might be OK
for less intensive setups, but I haven't
benchmarked it. Whatever FS you use it
should be efficient at handling very large
directories and lots of relatively small files.

You will at least want to create a filesystem with
a much higher number of inodes than the
default. In our system we found that the
global average message size was about 32K,
so with 4K blocks we created filesystems with
an 8::1 block::inode ratio.

 61

Database Mail Store

● Few current UNIX systems implement
these

● Advantages from databases:
– Indexing and access can be very fast
– Can save space by linking a single copy of a

message to multiple recipients
– Databases tend to have solid record-locking

primitives

A USENIX paper benchmarked IMAP servers
against different message store formats:

http://www.usenix.org/events/lisa03/tech/
full_papers/elprin/elprin_html/index.html

They used UW-IMAP (mbox), Courier IMAP
(Maildir), Cyrus (BerkeleyDB) and a model
MySQL-based mail server.

 62

Database Mail Store (cont)

● Disadvantages from databases
– Data structures are complex and fragile;

damage can cause widespread data loss or
corruption

– Require more specialized tools for backup
and message manipulation, compared to
mbox or Maildir which can use more basic file
manipulation tools

● Still more of a research topic than a
common solution, although performance
of trial implementations is encouraging

 63

Putting a Mail Store on NFS

● Delivering mail into NFS was traditionally
avoided
– Tended to be slower and higher-latency than

direct-attached storage
– Less stable than direct-attached storage
– Locking was unreliable

● NFS got better
– Network speed increasing faster than disk

transfer speed
– Locking somewhat better, and avoidable

 64

Putting a Mail Store on NFS
(cont)

● NFS is about the only storage technology
that allows multiple hosts to access the
same storage concurrently, allowing
parallelization of SMTP, POP, IMAP servers
working on a single mail store

● NFS “toasters” have become fast and
reliable storage devices

● Most really large mail systems have gone
to NFS

 65

POP/IMAP implementation

● Traditional POP and IMAP pass
authentication data in the clear

● Optional TLS commands or secure
authentication methods are not widely
supported in clients

● Standard service ports with required TLS
are well-standardized
– pop3s = TCP port 993, imaps = TCP port 995

● Client support for required TLS is widely
available now, so you should require it

 66

POP/IMAP performance

● POP is transactional (log in, read inbox to
index and check for new messages,
download/delete messages, log out)

● IMAP can be persistent (log in, do
whatever, hang out, do some more, etc.)
making it somewhat less I/O intensive

● Large folders still tend to be a problem
– mbox: lots of file reading
– Maildir: lots of readdir/open/read/close

transactions

 67

POP/IMAP performance (cont)

● Some POP/IMAP daemons support index
caching to speed up indexing phase
– UW IMAP: special “mbx” format that stores

index data at beginning of mbox-like folder
– Dovecot: supports auxiliary index cache files

that store index data for both mbox and
Maildir folders

● Index caching helps both mbox and
Maildir perform better by eliminating
unnecessary folder rescanning

 68

POP/IMAP performance (cont)

I/O

Time

mbox, no indexing

mbox, Dovecot indexing

Maildir

This graph is mostly schematic, but is based on
our experience with the different
configurations shown.

Dovecot's indexing made mbox far more
tolerable but still showed noticeable linear
growth.

Maildir actually has expected linear growth
behavior but it was hard to show that in the
graph. Growth in client access rates and mail
volume would also affect overall I/O.

 69

IMAP shared access

● More and more, people want to access
mail from multiple locations

● This often results in multiple clients
making overlapping accesses to the same
folders and “lockfighting”

● Some clients open multiple sessions on
the same folder!

● Maildir is about the only thing that helps
avoid problems that result from these
behaviors, but not completely

 70

Web email clients

● Popular for ease of use and flexibility of
access

● Generally like other IMAP client, but often
more resource-intensive
– Lots of quick login/<single command>/logout

transactions caused by each web page view

● Load on your IMAP servers can be
reduced with an IMAP proxy in front of
web email system, or web email system
with integrated IMAP session caching

 71

Techniques for high availability
and growth

 72

Backup MX hosts

● Traditional method for providing higher
reliability for mail transfer

● DNS has a special MX resource record
indicating cost and intended SMTP host

● SMTP protocol says to try multiple MXes
for a domain in order from lowest to
highest cost (or pick at random from
those with same cost) until success

● MTAs (but not all MUAs) can be directed
to alternate servers when one is down

 73

Problems with backup MXes

● All MXes for a domain need to be
configured with exactly the same SMTP-
time behavior (blocking, known users) or
they can be used to inject spam or
generate backscatter

● MTAs have to time out (delays of
minutes) trying to contact a nonworking
MX before trying the next

● Having equal-priority MXes doesn't
guarantee fair round-robin behavior

Spammers have actually been observed to try
MXes in the opposite order, because many
backup MXes don't have the same spam
filtering as the primaries. Since the primary
will accept mail from the backup MX, this
bypasses many SMTP-time blocking methods.

A backup MX that queues mail for the primary,
but can't reject unknown users at SMTP time,
will generate bounces when the primary
rejects unknown users.

 74

Load-balancing SMTP

● Load-balancing works well with SMTP due
to relatively short transactional nature of
SMTP sessions

● Load-balancer can detect and remove a
nonfunctional SMTP server from use
faster than MTAs time out or DNS updates
propagate

● Reduces visible downtime to MUAs
● Load-balancing policy is completely under

your control

 75

Issues with load-balancing
SMTP

● You still have to ensure consistent SMTP-
time behavior across all servers
– Configuration management tools to automate

and synchronize updates help here

● Mail queue items distributed across
multiple hosts
– If a host is lost, you might also lose its queue
– Sharing queue across hosts is problematic

● Centralized log collection

 76

Load-balancing POP and IMAP

● Main concern is reliable exclusion locking
– User sessions often distributed across

multiple hosts in server pool
– Maildir helps by removing most need for

locking and reducing lock durations

● If you're using NFS (you almost have to):
– noac (no attribute caching) mount option

ensures NFS clients see consistent file states
– fcntl() locking tends to be more NFS-safe
– Do same things on SMTP servers

 77

Load-balancing high-availability
architecture example

load-balancer
backup

load-balancer

SMTP SMTP. . . POP/IMAPPOP/IMAP . . .

NFS
server

Backup
NFS

server

Auth server

(RADIUS, LDAP)

The load balancer here is directing TCP sessions
for SMTP (25), MSA (587), POP-over-SSL (995),
and IMAP-over-SSL (993). Having a backup in
a failover configuration avoids making load-
balancing a single point of failure.

The auth server actually communicates with all
of the SMTP and POP/IMAP servers but to
avoid clutter I didn't draw in all those arrows.

We are able to afford a backup NFS server for
failover which is actively synchronized from
the primary. Although we don't have active
failover yet; if the primary fails we'd have to
scramble to re-point everything to the backup.

 78

Techniques for growth

● Load-balancing of SMTP, POP, IMAP for
parallelization (not just availability)

● Distribute mail store across multiple
storage backends
– /home1 on nfs1, /home2 on nfs2, etc.

● LDAP (also set up for high-availability) for
centralized authentication, fields to
handle user mail routing and service
routing

 79

Case studies

 80

“Brownouts”

● Older, traditional mail system with mbox-
format inboxes in /var/mail/user

● ~15,000 user accounts
● System “browns out” at midday on busy

days; delivery and access become slow
● I/O on /var/mail disk actually goes down

during brownouts
● System recovers when demand falls off

 81

“Brownouts” (cont)

● Why? Dot-locking in single directory
becomes bottlenecked on OS serialization
of directory updates

● Solution: Relocated inboxes to home
directories (~user/.mail)
– Split I/O across multiple home directory disks,

increasing all performance
– Users no longer contend with everyone else

for inbox locks
– Did require coordinated reconfiguration of

LDA, POP, IMAP, UNIX shell MUAs

 82

Maildir conversion

● Biggest, scariest system administration
project I've ever been involved with
– 40,000 users, 50 million messages, 1.6 TB,

lots of unhappy people if done badly

● Motivated by chronic problems with mbox
performance and lock contention issues
– Users with >100MB folders
– MUAs opening multiple sessions on folders

and fighting with themselves
– Stale NFS lock issues

 83

Maildir conversion goals

● Goal: All messages accessible by POP or
IMAP should remain accessible after
conversion
– Subgoal: POP and IMAP become only

supported access methods after conversion

● How do you find all that mail when it's
scattered all over home directories?
– We were lucky and clever: After previously

converting to Dovecot with mbox indexing,
index files could be used to find accessed
folders

The ulterior motive behind making POP and
IMAP be the only supported access methods is
that they put an abstraction layer in front of
the mail store, so a later change in store
format can be accomplished with less
disruption.

I'm not sure what we would have done without
the Dovecot index hack. We found that
although most people had segregated mail
folders into a ~/mail subdirectory, some had
not, and some had done weird things (like
using “-/mail”).

 84

Maildir conversion: how to turn
mbox into Maildir?

● mb2md
– Perl script written by people who did similar

conversion
● http://batleth.sapienti-sat.org/projects/mb2md

– Splits mbox folder out into Maildir, including
parsing headers for message status flags

– Can also process all mbox folders in a
subdirectory

● Chose Maildir++ layout, installed test
POP/IMAP daemons set up for Maildir,
converted some willing victims users

 85

Per-user Maildir conversion

● Always convert ~user/.mail (standard
home directory inbox)

● Always convert standard ~user/mail
folder directory

● Find Dovecot-created .imap index
directories containing index files, convert
corresponding folder for each index file
– Many users had folders outside

recommended ~user/mail directory

● Clean up: remove converted mboxes

 86

Maildir conversion: outage
planning

● For maximum safety we wanted to avoid
changes to stored messages during
conversion, but this meant disabling mail
services for however long it took

● Ran benchmarks by converting existing
mail to scratch location (also validated
automated conversion methodology)

● Benchmarks showed some benefits from
parallelization, confident of <2 days
conversion time (actually took ~26 hours)

 87

Maildir conversion: the big day
arrives

● Raised maxfiles setting in NetApp file
server to accommodate Maildir
– trial conversions showed average message

size of 32 kB, used to set global space::files
ratio

● Turn off POP and IMAP servers
● Hide procmail from sendmail

– Sendmail leaves messages destined for local
users in queue if it can't exec LDA

– Also raised Timeout.queuewarn to suppress
“not delivered in 4 hours” warnings

 88

Maildir conversion: the big day
arrives (cont)

● Also create snapshots of home directory
volumes in case of backout

● Disable user quotas (conversion
temporarily more than doubles space
usage for a user)

● Run per-user conversion script on a few
more test users and validate carefully

● Fire off batch conversions spread over 8
hosts

● Wait . . .

 89

Maildir conversion: post-
conversion

● Turn on quotas with somewhat modified
quota limits
– 25% space increase for fragmentation,

greatly increased file quotas

● Re-enable procmail configured for Maildir
delivery
– DEFAULT=$HOME/Maildir/

● Flush bulging mail queues
● Re-enable POP/IMAP with Maildir

configuration

 90

Maildir conversion: interesting
problems

● Manual conversion/cleanup for people
with odd or nonstandard configurations
– procmail sorting to Maildir++ folders instead

of mbox folders
– Mail that hadn't been converted because it

hadn't been accessed/indexed by Dovecot

● Nasty e1000 driver bug tickled by new
NFS traffic patterns with Maildir
– Interfaces on POP/IMAP servers would shut

down due to packet rate and memory stress
– Ultimately had to install locally-built driver

 91

Maildir conversion: the
aftermath

● Goal reached: 99+% of users noticed no
difference after conversion

● Really did eliminate issues with lock
contention and NFS

● Performance is mainly better, but I/O load
on NFS server turned into CPU load from
higher rate of NFS requests

