
Phil Regnauld
ccTLD workshop

November 26-29 2007
Amman, Jordan

DNS Operations

Goals

 Go beyond basic DNS administration,
focus on service stability

 Identify common operational problems
that plague authoritative nameserver
administrators

 Identify pitfalls and errors to avoid
when changing zones

 Define proper architectures
 Improve availability and reduce the
chance of a breakdown of service using
active monitoring

Overview

 Tools
− using dig and interpreting the results
− doc, dnstop

 Gotchas and common debugging problems
− RFC1912, 2182, 2870
− delegation and glue, keeping it up to date
− inconsistent delegation between parent and
child

− cache effects
− TTL policy

Overview

 Operations
− logging using BIND channels
− monitoring services and zone exports
− active delegation checking
− distributed hosting considerations
− scripting and automation

Tools – using dig

 dig is the domain information groper.
 dig is used to query nameservers for
information, usually for debugging
purposes.

 dig gives you information, and can
perfom queries, that most other tools
usually used (nslookup, host) don't
give you

 dig's output can be confusing the first
time one sees it...

Tools – using dig

 $ dig ns nsrc.org.



 ; <<>> DiG 9.4.1-P1 <<>> ns nsrc.org

 ;; global options: printcmd

 ;; Got answer:

 ;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 40659

 ;; flags: qr rd ra; QUERY: 1, ANSWER: 2, AUTHORITY: 0, ADDITIONAL: 2



 ;; QUESTION SECTION:

 ;nsrc.org. IN NS



 ;; ANSWER SECTION:

 nsrc.org. 132391 IN NS ARIZONA.EDU.

 nsrc.org. 132391 IN NS RIP.PSG.COM.



 ;; ADDITIONAL SECTION:

 ARIZONA.EDU. 104458 IN A 128.196.128.233

 RIP.PSG.COM. 89057 IN A 147.28.0.39



 ;; Query time: 60 msec

 ;; SERVER: 212.38.128.2#53(212.38.128.2)

 ;; WHEN: Tue Nov 27 02:58:37 2007

 ;; MSG SIZE rcvd: 108



Tools – using dig

 Pay particular attention to the flags
and the answer section

 Use dig at the authority of the parent
and child zones to control proper
delegation

 Do the informations match ?
 Example for cctld.eu.org

− Identify nameservers for EU.org

dig ns eu.org.

Tools – using dig

 ;; ANSWER SECTION:

 eu.org. 23772 IN NS ns0.pasteur.fr.

 eu.org. 23772 IN NS ns.eu.org.

 eu.org. 23772 IN NS ns-slave.free.org.

 eu.org. 23772 IN NS dns3.gandi.net.

 eu.org. 23772 IN NS auth1.dns.elm.net.

 eu.org. 23772 IN NS relay-1.ftel.co.uk.

 eu.org. 23772 IN NS ns1.pasteur.fr.




 Ask one of the servers for the NS
records for cctld.eu.org

dig @ns.eu.org NS cctld.eu.org.

Tools – using dig

 ;; AUTHORITY SECTION:

 cctld.eu.org. 259200 IN NS NS1.CATPIPE.NET.

 cctld.eu.org. 259200 IN NS NS2.CATPIPE.NET.

 cctld.eu.org. 259200 IN NS NS1.cctld.eu.org.



 Notice the flags for the query, and the
way the answers are presented

 Control that the servers for
cctld.eu.org return the same
information:

dig @ns1.cctld.eu.org NS cctld.eu.org.

 What do you notice ?

Tools – doc

 Checking delegations manually is error-
prone and tiresome

 A tool to automatize this particular
check exists: doc

 Doc can be installed as a port/package
 Usage:

doc [-p] domain.name

Tools – doc

 Try using doc – it should be installed.

doc -p cctld.eu.org

Gotchas and common debugging
problems

 Logging is the single most useful tool
for troubleshooting a running
nameserver – we'll see later how to set
it up

 Check out RFC1912, 2182 and 2870
 Lame delegations and glue problems can
be easy to overlook if the wrong tools
are used

 Caching makes this more complicated –
problems might appear later.

 Pick a reasonable TTL policy

Gotchas and common debugging
problems: caching

 Cache effects
− Changes can take a while to propagate –
plan accordingly

 TTL and SOA policy
− RIPE has a document for recommended SOA
values:
ftp://ftp.ripe.net/ripe/docs/ripe-203.pdf

example.com. 3600 SOA dns.example.com. admin.example.com. (
 1999022301 ; serial YYYYMMDDnn
 86400 ; refresh (24 hours)
 7200 ; retry (2 hours)
 3600000 ; expire (1000 hours)
 172800) ; minimum (2 days)

ftp://ftp.ripe.net/ripe/docs/ripe-203.pdf

Gotchas and common debugging
problems: caching

 It's common to misinterpret/forget the
negative value of the SOA

 ”negative” means ”how long can remember
that the record for this query does NOT
exist”

Operations

 remember to turn off recursion!
 logging
 monitoring service (availability and
data)

 active delegation checking
 hosting and architecture considerations

Logging

 Using BIND channels, categories and
severities (chap 7.5 of DNS & Bind)

− The idea is to define channels (file,
syslog, ...) and the assign categories to
these channels:

logging {

 channel transfers {

 file � log/transfers� versions 5 size 100M;

 print-time yes;

 };

 category xfer-out {

 transfers;

 };

 category default {

 default_syslog;

 default_debug;

 };

};

Logging

 Categories of interest:
− default

• a good set of defaults – send it to your syslog
− lame-servers

• bad delegation
− load

• zone loading events
− notify

• zone change notifications
− queries

• logging of queries – can be huge!
− response-checks

• badly formed answerd, additional information, ...
− xfer-in / xfer-out

• events for incoming / outgoing zone transfers

Logging

 Add logging to /etc/namedb/named.conf,
and restart named

rndc reconfig

 Do a zone transfer for a zone from one
of your neighbors:

dig @ns.of.neighbor axfr zone.name

 Look at /etc/namedb/log/transfers

more /etc/namedb/log/transfers

Monitoring - services

 Monitoring services – why ?
− make sure that your nameserver is
answering correct data, in a timely manner

− monitor secondaries
− monitor infrastructure to deliver DNS
service (network, servers, ...)

 Tools useful for monitoring:
− echoping – check service latency and
availability

− SmokePing – graph of reponse times
− Nagios – service and server monitoring
− ... many others

Monitoring – zone exports

 Monitoring zone export – why ?
− Avoid publishing incorrect information
− Avoid publishing incomplete information
(truncated zone)

− Avoid disappearance of your zone!
(undetected errors + expire of zone)

 Checks
− zone change controls before AND after
publication
• named-checkzone

− use EOD markers (data that your export
script adds to the zone at the end of your
zone export job
• zonevalid TXT ”exported at 20071126 09:54”

Monitoring – zone exports

 Undetected errors
− zone fails to load (invalid syntax or
inconsistent – CNAME and other data for
example)

− no one notices
− 2-4 weeks later, the zone expires on the
secondaries

− the zone has disappeared
− difficult to correlate the problem with
the exact cause (unless one has logs)

 Note that if ”rndc reload” is used,
BIND will keep the old zone in memory
if the new one fails validation

Monitoring - baseline

 Get to know your system
 Using tools such as dnstop, tcpdump,
MRTG, establish a baseline for your
platform when it is functioning
normally

 Identify
− average queries per second
− memory usage for named

Monitoring - baseline

 Useful for capacity planning for future
growth, and for handling attacks

Delegation checking

 Mostly a policy decision
 Proactive or reactive ?

− check regularly every delegation
− or check only when delegation changes

 But there are advantages
− avoid to field problem reports that are
Not Your Problem (”domain XYZ doesn't
work!”)

 Some TLDs have a ”Name server
registration” procedure.

Secondary considerations

 If you're not already doing it, then
make sure your SOA server is a hidden
master, not accessible from the rest of
the network

 None of your public servers should
serve any data that is
unique/irreplaceable.

 Normally, all public servers are
secondaries (but there are other
methods, including secure copy)

Scripting and automation

 You should be familiar with at least
one scripting language (Shell, Perl,
Python, ...)

 Automate as much as you can
 Run tools like doc, dig to control
delegations for critical zones

?

Questions ?

