
Campus Networking Workshop

CIS 399

BGP Theory and Configuration

Program

• Using BGP Attributes

• Implementing IBGP

• Implementing EBGP

• Emphasis in Stability, Scalability

and Configuration Examples

3

BGP Review

Why use BGP?

What we want to achieve

• Implement routing policies that

are:

–Scalable

–Stable

–Simple

More Details ...

• You need to scale your IGP

• You are a client with two external

connections

• You need to receive all Internet routes

• You need to implement a consisten routing

policy or expand your QoS policy

Withdrawals

Attributes

(NLRI - Network-Layer

Reachability Information)

Prefixes

BGP Updates

BGP Attributes for Routing

Policy Definition

 ORIGIN

 AS-PATH

 NEXT-HOP

 MED

 LOCAL_PREF

 ATOMIC_AGGREGATE

 AGGREGATOR

 COMMUNITY

 ORIGINATOR_ID

 CLUSTER_LIST

 MP_REACH_NLRI

 MP_UNREACH_NLRI

External BGP (eBGP)

• Router B
router bgp 110
neighbor 131.108.10.1 remote-as 109

• Router A
router bgp 109
neighbor 131.108.10.2 remote-as 110

AS 109

AS 110

131.108.0.0

A

B

150.10.0.0

.1

.2

•Between routers in different ASNs

•Usually with a direct conexion

•With next-hop pointing to itself

A B

Internal BGP

Router B:

router bgp 109

neighbor 131.108.30.2 remote-as 109

Router A:

router bgp 109

neighbor 131.108.20.1 remote-as 109

• Neighbors within the
same ASN

• Don’t modify next-hop

• Not necessarily with a
direct connection

• Don’t announce routes
learn by other iBGP peers

Changing defaults:

Just for EBGP NLRI:
neighbor x.x.x.x next-hop-self

Modify with a route-map:
set ip next-hop { A.B.C.D | peeraddress}

AS 300
AS 200

150.10.0.0/16

192.0.0.0/24

AS 201 AS 301

150.1.1.1

150.10.1.1 150.10.1.2

EBGP—next-hop set to self

3rd Party EBGP

BGP Attributes: NEXT_HOP

150.1.1.2 150.1.1.3

IBGP next-hop unmodified

150.10.0.0/16 150.10.1.1

192.0.0.0/24 150.10.1.1 192.0.0.0/24 150.1.1.3

1880

193.0.34/24
1882

193.0.35/24

1881

193.0.33/24

A: 193.0.33/24 1880 1881

B: 193.0.34/24 1880
C: 193.0.32/24 1880 1883

E: 193.0.32/22 1880 {1881, 1882,1883}

1883

193.0.32/24

D

Problem: Loop detection, Policies

Solution: AS-PATH

• AS Sequence

–List of ASN the
advertisement has traversed

• AS Set

–Summarizes an AS
Sequence

–The order in the sequence
is lost

• Modify with route-map:
set as-path

1755

690

200

1880

1883

209

Problem: Indicate the best path to an AS

Solution: MED

• Informs about an entry point preference

• Is compared if the path is to the same AS

– Unless you use “bgp always-compare-med”

• Is a non-transitive attribute

• In a route-map: set metric

 set metric-type internal

1755 1880

690

660

Problem: Overriding MED/AS-PATH

Solution: Local Preference

• Attribute is local to the AS – mandatory for iBGP
updates

• route-map: set local-preference

680

Problem: Overriding Local Preference

Solution: Weight

• Local to the router where is configured

• route-map: set weight

• The highest weight wins over all the valid paths

1755 1880

666

690

660

CORE

Customer A

Full Routes

Customer B

Customer Routes

Peer A

Communities:

1:100—customer routes

1:80—peer routes

Match Community
1:100

Set Community
1:80

Match Community
1:100 1:80

Match Community
1:100

Set Community

1:100

Problem: Scaling Routing Policies

Solution: COMMUNITY

BGP Attributes: COMMUNITY

• Groups destinations to help scale
policy application

• Typical Communities:
– Prefixes learned from customers

– Prefixes learned from peers

– Prefixes in a VPN

– Prefixes with preferential treatment in
queuing

BGP Attributes: COMMUNITY

• Activated per neighbor/peer-group:

– neighbor {peer-address | peer-group-name}

send-community

• Transitive across AS boundaries

• Common format is a 4-bytes string <AS>:

[0-65536]

BGP Attributes: COMMUNITY

• Each prefix can be a member of several
communities

• Route-map: set community
–<1-4294967295> community number

–aa:nn community number in aa:nn format

–additive Adds to a list of existing communities

–local-AS Do not send to EBGP neighbors (well-known community)

–no-advertise Do not send to any peers (well-known community)

–no-expert Do not expert outside of the AS/Confederation (well-known

– community)

–none No community attribute

Least Used Attribute: ORIGIN

• IGP – created with a network command in
the BGP configuration

• EGP – redistributed from an EGP

• Incomplete – redistributed from an IGP in
the BGP configuration

• NOTE – always use a route-map to modify
the origin: set origin igp

Set command in a route-map

• as-path Prepends a string of AS to the AS-PATH attribute

• comm-list Sets BGP community list (for deletion)

• community BGP community attribute

• dampening Sets BGP dampening formeters

• local-preference BGP local preference attribute

• metric Metric value for the destination routing protocol

• origin BGP origin code

• weight BGP weight for routing table

• ip next-hop { A.B.C.D | peer-address }

router1#sh ip bgp 10.0.0.0

BGP routing table entry for 10.0.0.0/24, version 139267814

Paths: (1 available, best #1)

 Not advertised to any peer

 65000 64000 {100 200}, (aggregated by 64000 16.0.0.2)

 10.0.10.4 (metric 10) from 10.0.0.1 (10.0.0.2)

 Origin IGP, metric 100, localpref 230, valid, aggregated

 internal (or external or local),

 atomic-aggregate, best

 Community: 64000:3 100:0 200:10

 Originator: 10.0.0.1, Cluster list: 16.0.0.4, 16.0.0.14

BGP Attributes

! AS-PATH AS ID

! NEXT-HOP
IGP METRIC PEER-IP PEER-ID

Highest WEIGHT

 Highest LOCAL PREFERENCE
 LOCALLY ORIGINATED (eg network/aggregate)

 Shortest AS-PATH
 Lowest ORIGIN (IGP < EGP < incomplete)

 Lowest MED

 EBGP
 IBGP

 Lowest IGP METRIC to next-hop
 Oldest external path

 Router with lowest Router ID

 Shortest CLUSTER_LIST length
 Lowest Neighbor IP address

Decision Algorithm

Only consider synchronized routes without AS loops and a valid

next-hop, and then prefer:

Synchronization

1880

209

690

B

A

 Make sure that iBGP next-hops are reachable via

the IGP, and then:

 router bgp 1880
 no synchronization

Router A won’t announce prefixes to AS209 until its

IGP has converged

router bgp 100

 no synchronization

 no auto-summary
 distance 200 200 200

General Considerations

• Synchronization is not required if you have

a full iBGP mesh

• Don’t let BGP override your IGP

• auto-summary: avoid. Instead use

aggregation commands:

Until now …

• We can apply policies on a per AS basis

• Can group prefixes using communities

• Can chose entry and exit points for large

policy groups using MED and local

preference attributes

But, can the policies scale?

26

Implementing iBGP

Route Reflectors, Peer Groups

Guidelines for a Stable iBGP

• Peer using the loopback address

– neighbor { ip address | peer-group}

 update-source loopback0

• Independent from physical interface failures

• Takes advantage of any IGP load-sharing

Guidelines for a Stable iBGP

• Use peer-group and route-reflector

• Only carry the next-hops in the IGP

• Carry full routes in BGP if it is necessary

• DO NO redistribute BGP into IGP

Using Peer-Groups

iBGP Peer Group

Full Routes

Peer-group
Default-Only

Peer-Group
Customer Routes

Peer-group

eBGP

What is a peer-group?

• All members of a peer-group have a
common outbound policy

• Updates are generated only once
per peer-group

• Simplifies configuration

• Members can have different inbound
policies

Why use a Route-reflector?

n=1000 => almost
half a million iBGP
sessions!

To avoid having a

full mesh with

N(n-1)/2 sessions 13 Routers =>

78 iBGP

sessions!

Using Route-Reflectors

Rule for RR Loop

Avoidance: RR

topology should

follow the physical

topology

 Backbone
RR RR

RRC

Grupo A

RR

RR

RRC

Grupo B

RRC

Grupo D
RR

RRC

Grupo C

RR

What is a Route-Reflector?

• The reflector receives path updates

from clients and non-clients

• If the path is from a client, reflect it to

clients and non-clients

• If the best path is from a non-client,

reflect it only to the clients

Deploying Route-Reflectors

• Split the backbone into different groups

• Each group contains at least one RR
(multiple for redundancy), and multiple
clients

• Build a iBGP full mesh for the RRs

• Utilize single IGP - next-hop is not modified
by the RR

Hierarchical Route-Reflector

• Example:
RouterB>sh ip bgp 198.10.0.0

BGP routing table entry for 198.10.10.0/24

3

141.153.14.2 from 141.153.30.1 (140.10.1.1)

Origin IGP, metric 0, localpref 100, valid, internal, best

C

RR

D

A
RRC Router id

141.153.17.1

Router id

140.10.1.1

141.153.30.1

141.153.14.2

Router id

141.153.17.2

198.10.0.0

AS3

B

RRC

RR

Originator: 141.153.17.2

Cluster list: 144.10.1.1, 141.153.17.1

BGP Attributes: ORIGINATOR_ID

• ORIGINATOR_ID

– Router ID of iBGP speaker that reflects the RR client routes to

non-clients

– Overriden by: bgp cluster-id x.x.x.x

• Useful for troubleshooting and loop detection

BGP Attributes: CLUSTER_LIST

• CLUSTER_LIST

– String of ORIGINAROR_IDs through which the prefix has

traversed

• Useful for troubleshooting and loop detection

Until now …

• Is the iBGP peering Stable?

– Use of loopbacks for the connection

• Will it Scale?

– Use peer-groups

– Use route-reflectors

• Simple, hierarchical configuration?

39

Deploying eBGP

Customer & ISP Issues

Customer Issues

• Procedure

– Configure BGP (use session passwords!)

– Generate a stable aggregate route

– Configure Inbound Policy

– Configure Outbound Policy

– Configure loadsharing/multihoming

AS 200

AS100

10.0.0.0

A

B

10.60.0.0

10.200.0.0

.1

.2

Connecting to an ISP

 Router B:

 router bgp 100

 aggregate-address 10.60.0.0 255.255.0.0 summary-only

 neighbor 10.200.0.1 remote-as 200

 neighbor 10.200.0.1 route-map isp-out out

 neighbor 10.200.0.1 route-map isp-in in

• AS 100 is a customer of AS 200

• Usually with a direct conection

What is Aggregation?

• Summarization based on specific routes

from the BGP routing tables

– 10.1.1.0 255.255.255.0

– 10.2.0.0 255.255.0.0

– => 10.0.0.0 255.0.0.0

How to Aggregate?

• aggregate-address 10.0.0.0 255.0.0.0 {as-

set} {summary-only} {route-map}

• Use as-set to include path and community

information from specific routes

• summary-only suppresses specific routes

• Use route-map to configure other attributes

Why Aggregate?

• Reduce the number of prefixes to announce

• Increase stability — aggregate routes are
maintained even when specifics disappear

• How to generate stable aggregates:

– router bgp 100
– aggregate-address 10.0.0.0 255.0.0.0 as-set summary-only
– network 10.1.0.0 255.255.0.0
– :

– ip route 10.1.0.0 255.255.0.0 null0

BGP Attributes: ATOMIC_AGGREGATE

• Indicates the loss of AS-PATH information

• Must not be removed once configured

• Configuration: aggregate-address x.x.x.x

• Is not set if the as-set keyword is used,

however, AS-SET and COMMUNITY then

carry information about the specifics

BGP Attributes: AGGREGATOR

• AS number and IP of router generating

the aggregate

• Useful for troubleshooting

Attributes of the Aggregate

– NEXT_HOP = local (0.0.0.0)

– WEIGHT = 32768

– LOCAL_PREF = none (assumes 100)

– AS_PATH = AS_SET or nothing

– ORIGIN = IGP

– MED = none

Why an Inbound Policy?

• So we can apply a recognizable COMMUNITY that can be used
in outbound filters and other policies

• Configure local-preference to override the default of 100

• Multihoming loadsharing

• Example:

route-map isp-in permit 10

 set local-preference 200

 set community 100:2

Why an Outbound Policy?

• Outbound prefix filters help protect against errors (can
also apply as-path and community filters)

• Send communities based on agreements with ISP

• Example

route-map isp-out permit 10

 match ip address prefix-list outgoing

 set community 100:1 additive

100

200

A
Loopback 0

10.200.0.2

Load-Sharing – One Path

Router A:

interface loopback 0

 ip address 10.60.0.1 255.255.255.255

!

router bgp 100

 neighbor 10.200.0.2 remote-as 200

 neighbor 10.200.0.2 update-source loopback0

 neighbor 10.200.0.2 ebgp-multi-hop 2

100

200 A

Load-sharing – Multiple Paths/

Same AS

Router A:

 router bgp 100

 neighbor 10.200.0.1 remote-as 200

 neighbor 10.300.0.1 remote-as 200

 maximum-paths 6

What is Multihoming?

• Connecting to two or more ISPs to

increase:

– Reliability – if one ISP fails, still have

others

– Performance – better paths to common

Internet destinations

Types of Multihoming

• Three common cases:

– Default route from all providers

– Customer plus Default from all providers

– Full routes from all providers

Default Route from All Providers

• Low memory and CPU requirements

• Provider sends BGP default => provider decides

based on IGP metrics to reach default

• You send all your routes to the provider =>

inbound path decided by Internet

– You can influence using AS-PATH prepend

Default Route from All Providers

AS 400

AS 200

AS 100
160.10.0.0/16

AS 300

E

B

C

A

D
0.0.0.0 0.0.0.0

C chooses lowest

IGP metric to Default

Customer+Default from All Providers

• Medium memory/CPU requirements

• “Best” path – usually the shortest AS-PATH

• Use local-preference to override based on prefix, as-path,
or community

• IGP metric to default used for all other destinations

Customer+Default from All Providers

AS 400

Provider

AS 200

Customer

AS 100
160.10.0.0/16

Provider

AS 300

E

B A

D

C

C chooses the

shortest AS-PATH

Provider

AS 300

AS 400

Provider

AS 200

D

ip prefix-list AS100 permit 160.10.0.0/16

route-map AS300in permit 10

 match ip address prefix-list AS100

 set local-preference 800

Customer Routes from All Providers

800

Customer

AS 100
160.10.0.0/16

B A

AS 400

E

C

C chooses the highest

local-preference

Full Routes from All Providers

• Higher memory/CPU requirements

• Reach all destinations based in the “best” path
– usually the one with the shortest path

• Still can adjust manually using local-
preference and comparing as-path,
communities and prefix-lists

AS 400

AS 200

AS 100

AS 300

B

C

A

E D

AS 500

Full Routes from All Providers

C chooses the

shortest path

Controlling Inbound Traffic?

• Controlling inbound traffic is very difficult due to lack

of a transitive metric

• You can split your prefix announcements among the

providers, but then, what happens to redundancy?

Controlling Inbound Traffic?

Good Internet Citizen:

Splits address space

Uses “advertise maps”

 Bad Internet Citizen:
Splits the address space

Uses “as-path prepend”

Using “AS-PATH prepend”

AS 400

10.1.0.0

Proveedor

AS 200

Cliente

AS 100

Proveedor

AS 300

E

B

C

A

D

ip prefix-list AS100 permit 10.1.0.0/16

 route-map AS300out permit 10

 match ip address prefix-list AS100

 set as-path prepend 400

10.1.0.0/16 300 400 400

10.1.0.0/16 200 400 (Best)

ISP1
ISP2

R1

R2

R3

1.10.6/24
10.15.7/24

1.10.6.1
10.15.7.4

1.10.6/24 10.15.7/24

10.15.7/24 auto-inject

10.15/16

access-list 1 permit 10.15.7.0 !Announces when ...

access-list 2 permit 10.15.0.0 !… this one disappears

neighbor <R1> advertise-map am non-exist-map bb

route-map am permit 10

 match ip address 1

route-map bb permit

 match ip address 2

Using an “Advertise-Map”

R4

1.10/16

Until Now …

• Stability via:

– Aggregation

– Multihoming

– Inbound/Outbound Filtering

• Scalability of Memory/CPU:

– Default, customer routes, full routes

• Simplicity using “standard” solutions

ISP Issues

• Scale customer aggregation using BGP

• Offer a choice of route feeds

• Peer with other providers

• Minimize BGP activity and protect against
customer’s misconfigurations

• Provide a backup service

• Propagate a QoS policy

Guidelines for Customer Aggregation

• Define at least three “peer-groups”:
– cust-default – send default route only

– cust-customer – send customer’s routes only

– cust-full – send all routes

• Identify prefixes using communities
– 2:100=customers; 2:80=peers

• Apply passwords and an inbound prefix-list on a
per neighbor basis

Customer Aggregation

CORE

Route Reflector

Client Peer Group

Aggregation Router

(RR Client)

NOTE: Apply passwords and inbound prefix list

to each customer

Customer Routes

Peer Group

“Default”

Peer Group

Full Routes

Peer Group

cust-full Peer-group

neighbor cust-full peer-group

neighbor cust-full description Send all routes

neighbor cust-full remove-private-as

neighbor cust-full version 4

neighbor cust-full route-map cust-in in

neighbor cust-full prefix-list cidr-block out

neighbor cust-full route-map full-routes out

.

ip prefix-list cidr-block seq 5 deny 10.0.0.0/8 ge 9

ip prefix-list cidr-block seq 10 permit 0.0.0.0/0 le 32

cust-full outgoing route-map

ip community-list 1 permit 2:100

ip community-list 80 permit 2:80

.

route-map full-routes permit 10

 match community 1 80 ; customers & peers

 set metric-type internal ; MED = IGP metric

 set ip next-hop peer-address ; ours

cust-in route-map

route-map cust-int permit 10

 set metric 4294967294 ; ignore MED

 set ip next-hop peer-address

 set community 2:100 additive

cust-customer peer-group

neighbor cust-customer peer-group

neighbor cust-customer description Customer Routes

neighbor cust-customer remove-private-as

neighbor cust-customer version 4

neighbor cust-customer route-map cust-in in

neighbor cust-customer prefix-list cidr-block out

neighbor cust-customer route-map cust-routes out

cust-routes route-map

route-map cust-routes permit 10

 match community 1 ; customers only

 set metric-type internal ; MED = igp metric

 set ip next-hop peer-address ; ours

default-route peer-group

neighbor cust-default peer-group

neighbor cust-default description Send Default

neighbor cust-default default-originate route-map default-route

neighbor cust-default remove-private-as

neighbor cust-default version 4

neighbor cust-default route-map cust-in in

neighbor cust-default prefix-list deny-all out

ip prefix-list deny-all seq 5 deny 0.0.0.0/0 le 32

default-route route-map

route-map default-route permit 10

 set metric-type internal ; MED = igp-metric

 set ip next-hop peer-address ; ours

Peer Groups for IXPs & NAPs

• Similar to eBGP customer aggregation

except inbound prefix filtering is rarely used

• Instead use maximum-prefix and prefix sanity

checking

• Continue to use passwords for each

neighbor!

Peer Groups for IXPs & NAPs

neighbor nap peer-group

neighbor nap description from ISP A

neighbor nap remove-private-as

neighbor nap version 4

neighbor nap prefix-list sanity-check in

neighbor nap prefix-list cidr-block out

neighbor nap route-map nap-out out

neighbor nap maximum prefix 30000

Peer Groups for IXPs & NAPs

route-map nap-out permit 10

 match community 1 ; customers only

 set metric-type internal ; MED = IGP metric

 set ip next-hop peer-address ; ours

Peer Groups for IXPs & NAPs :

 Prefix-List sanity-check

First filter our own address space!!

#deny default

ip prefix-list sanity-check seq 5 deny 0.0.0.0/32

#deny anything beginning with 0

ip prefix-list sanity-check seq 10 deny 0.0.0.0/8 le 32

#deny masks > 20 for all class A networks (1-127)

ip prefix-list sanity-check seq 15 deny 0.0.0.0/1 ge 20

#deny 10/8 per RFC1918

ip prefix-list sanity-check seq 20 deny 10.0.0.0/8 le 32

reserved by IANA – loopback address

ip prefix-list sanity-check seq 25 deny 127.0.0.0/8 le 32

#deny masks >= 17 for all class B networks (129-191)

ip prefix-list sanity-check seq 30 deny 128.0.0.0/2 ge 17

#deny network 128.0 – reserved by IANA

ip prefix-list sanity-check seq 35 deny 128.0.0.0/16 le 32

Peer Groups for IXPs & NAPs:

 Prefix-List sanity-check
#deny 172.16 perRFC1918

ip prefix-list sanity-check seq 40 deny 172.16.0.0/12 le 32

#deny class C 192.0.20.0 reserved by IANA

ip prefix-list sanity-check seq 45 deny 192.0.2.0/24 le 32

#deny class C 192.0.0.0 reserved by IANA

ip prefix-list sanity-check seq 50 deny 192.0.0.0/24 le 32

#deny 192.168/16 per RFC1918

ip prefix-list sanity-check seq 55 deny 192.168.0.0/16 le 32

#deny 191.255.0.0 – reserved by IANA (Creo ??)

ip prefix-list sanity-check seq 60 deny 191.255.0.0/16 le 32

#deny masks > 25 for class C (192-222)

ip prefix-list sanity-check seq 65 deny 192.0.0.0/3 ge 25

#deny anything in 223 – reserved by IANA

ip prefix-list sanity-check seq 70 deny 223.255.255.0/24 le 32

#deny class D/Experimental

ip prefix-list sanity-check seq 75 deny 224.0.0.0/3 le 32

Summary

• Scalability:

– Use attributes, specially COMMUNITY

– Use peer-groups and route-reflectors

• Stability:

– Use loopback addresses for iBGP

– Generate Aggregates

– Use passwords per BGP session

– Always filter inbound and outbound
announcements

Summary

• Simplicity – use of standard solutions:

– Three options for multihoming

– Group customers using communities

– Apply standard policies at the edge

– Avoid “special configurations”

– Automate configuration generation (RR &

RtConfig)

References:

• Cisco (www.cisco.com)

• Dave Meyer (dmm@cisco.com)

• John Stewart, BGP4, Addison Wesley

• Sam Halabi, “Internet Routing Architectures”,

Cisco Press

• RFCs

ip prefix-list announce-my-prefix seq 10 permit <network>/<prefix_mask> ge 23

ip prefix-list announce-my-prefix seq 100 deny 0.0.0.0/32 le 32

ip prefix-list accept-default seq 10 permit 0.0.0.0/0 ge 32

ip prefix-list accept-default seq 100 deny 0.0.0.0/0 le 31

access-list 10 permit <network> <wildcard_mask>

access-list 10 deny any

access-list 20 permit 0.0.0.0 0.0.0.0

access-list 20 deny any

Examples for Customer Filters

