
Internet Exchange Points (IXPs)

Introduction to Internet
Exchange Points
  A bit of history
  What are they?
  Why use them?
  Design Considerations

A Bit of History…

  End of NSFnet – one major backbone
  Move towards commercial Internet

  Private companies selling their bandwidth
  Need for coordination of routing

exchange between providers
  Traffic from ISP A needs to get to ISP B

  Routing Arbiter project created to
facilitate this

What is an Exchange Point

  Network Access Points (NAPs)
established at end of NSFnet
  The original “exchange points”

  Major providers connect their networks
and exchange traffic

  High-speed network or ethernet switch
  Simple concept – any place where

providers come together to exchange
traffic

Conceptual Diagram of an IXP

ISP Router

ISP Router

ISP Router

Exchange Point Medium

Internet Exchange Point
Why peer?
  Consider a region with one ISP

  They provide internet connectivity to their customers
  They have one or two international connections

  Internet grows, another ISP sets up in
competition
  They provide internet connectivity to their customers
  They have one or two international connections

  How does traffic from customer of one ISP get
to customer of the other ISP?
  Via the international connections

Internet Exchange Point
Why peer?
  Yes, International Connections…

  If satellite, RTT is around 550ms per hop
  So local traffic takes over 1s round trip

  International bandwidth…
  Costs order of magnitude or two more than

domestic bandwidth
  Becomes congested with local traffic

  Wastes money, harms performance

Internet Exchange Point
Why peer?
  Multiple service providers
  Each with Internet connectivity

Why IXPs?

  Is not cost effective
  Backhaul issue causes cost to both

parties

Internet Exchange Point
Why peer?
  Solution:

  Two competing ISPs peer with each other
  Result:

  Both save money
  Local traffic stays local
  Better network performance, better QoS,…
  More international bandwidth for expensive

international traffic
  Everyone is happy

Why IXPs?

  Domestic Interconnection

Internet Exchange Point
Why peer?
  A third ISP enters the equation

  Becomes a significant player in the region
  Local and international traffic goes over

their international connections

  They agree to peer with the two other
ISPs
  To save money
  To keep local traffic local
  To improve network performance, QoS,…

Why IXPs?

  A third ISP enters the equation

Internet Exchange Point
Why peer?
  Peering means that the three ISPs have

to buy circuits between each other
  Works for three ISPs, but adding a fourth or

a fifth means this does not scale

  Solution:
  Internet Exchange Point

Internet Exchange Point

  Every participant has to buy just one
whole circuit
  From their premises to the IXP

  Rather than N-1 half circuits to connect
to the N-1 other ISPs
  5 ISPs have to buy 4 half circuits = 2 whole

circuits → already twice the cost of the IXP
connection

Internet Exchange Point
  Solution

  Every ISP participates in the IXP
  Cost is minimal – one local circuit covers all domestic

traffic
  International circuits are used for just international

traffic – and backing up domestic links in case the
IXP fails

  Result:
  Local traffic stays local
  QoS considerations for local traffic is not an issue
  RTTs are typically sub 10ms
  Customers enjoy the Internet experience
  Local Internet economy grows rapidly

Internet Exchange Point

  Ethernet switch in the middle

Why use an IXP?

  PEERING
  Shared medium vs. point-to-point
  Shared

  can exchange traffic with multiple peers at one
location via one interface

  Point-to-Point
  for high volumes of traffic

Why use an IXP?

  KEEP LOCAL TRAFFIC LOCAL!!!
  ISPs within a region peer with each other at

the local exchange
  No need to have traffic go overseas only to

come back
  Much reduced latency and increased

performance

Why use an IXP?

  SAVES MONEY!!!
  Traffic going overseas means transit

charges paid to your upstream ISP
  Money stays in local economy

  Used to provide better local infrastructure and
services for customers

  Customers pay less for Internet access
  Therefore more customers sign up
  ISP has more customers, better business

Why use an IXP?

  VASTLY IMPROVES PERFORMANCE!!!
  Network RTTs between organisations in the

local economy is measured in milliseconds,
not seconds

  Packet loss becomes virtually non-existent
  Customers use the Internet for more

products, services, and activities

Exchange Point Design

ISP 1 ISP 2 ISP 3

IXP
Management
Network

ISP 6 ISP 5 ISP 4

Ethernet Switch

IXP Services:
TLD DNS,

Routing Registry
Looking Glass,

news, etc

Exchange Point Design

ISP 1 ISP 2 ISP 3

IXP
Management
Network

ISP 6 ISP 5 ISP 4

Ethernet Switches

IXP Services:
TLD DNS,

Routing Registry
Looking Glass,

news, etc

Peering at an IXP

  Each participant needs to run BGP
  They need their own AS number

  Each participant configures external
BGP with the other participants in the
IXP
  Peering with all participants
 or

  Peering with a subset of participants

IP Address Space
  Some IXPs use private addresses for the IXP

LAN
  Public address space means the IXP network can be

leaked to the Internet, which could be undesirable
  Filtering RFC1918 address space by ISPs is Best

Practice; this avoids leakage

  Some IXPs use public addresses for the IXP
LAN
  Address space is available from the RIRs for IXPs
  IXP terms of participation usually forbid carrying the

IXP LAN addressing in the ISP backbone

Exchange Point examples

  LINX in London, UK
  Ethernet switches

  AMS-IX in Amsterdam, NL
  Ethernet switches

  SIX in Seattle, US
  Ethernet switches

  JPNAP in Tokyo, Japan
  Ethernet switches

DHCP

DHCP: Dynamic Host
Configuration Protocol
  Goal: allow host to dynamically obtain its IP

address from network server when it joins
network
  Can renew its lease on address in use
  Allows reuse of addresses (only hold address while

connected an “on”
  Support for mobile users who want to join network

(more shortly)

  DHCP overview:
  host broadcasts “DHCP discover” msg
  DHCP server responds with “DHCP offer” msg
  host requests IP address: “DHCP request” msg
  DHCP server sends address: “DHCP ack” msg

DHCP client-server scenario

223.1.1.1

223.1.1.2

223.1.1.3

223.1.1.4
 223.1.2.9

223.1.2.2

223.1.2.1

223.1.3.2
223.1.3.27

DHCP
server

arriving DHCP
client needs
address in this
network

223.1.3.1

time

DHCP client-server scenario

DHCP server: 223.1.2.5 arriving
 client DHCP discover

src : 0.0.0.0, 68
dest.: 255.255.255.255,67
yiaddr: 0.0.0.0
transaction ID: 654

DHCP offer
src: 223.1.2.5, 67
dest: 255.255.255.255, 68
yiaddrr: 223.1.2.4
transaction ID: 654
Lifetime: 3600 secs

DHCP request
src: 0.0.0.0, 68
dest:: 255.255.255.255, 67
yiaddrr: 223.1.2.4
transaction ID: 655
Lifetime: 3600 secs

DHCP ACK
src: 223.1.2.5, 67
dest: 255.255.255.255, 68
yiaddrr: 223.1.2.4
transaction ID: 655
Lifetime: 3600 secs

Domain Name System

(DNS)

Computers use IP addresses.
Why do we need names?
  Names are easier for people to

remember

  Computers may be moved between
networks, in which case their IP address
will change.

The old solution: HOSTS.TXT

  A centrally-maintained file, distributed
to all hosts on the Internet

SPARKY 128.4.13.9
UCB-MAILGATE 4.98.133.7
FTPHOST 200.10.194.33
... etc

  This feature still exists:
  /etc/hosts (UNIX)
  c:\windows\hosts

hosts.txt does not scale

✗ Huge file (traffic and load)
✗ Name collisions (name uniqueness)
✗ Consistency
✗ Always out of date
✗ Single point of Administration
✗ Did not scale well

The Domain Name System
was born
  DNS is a distributed database for holding

name to IP address (and other) information
  Distributed:

  Shares the Administration
  Shares the Load

  Robustness and improved performance
achieved through
  replication
  and caching

  Employs a client-server architecture
  A critical piece of the Internet's infrastructure

DNS is Hierarchical
.(root)

uk com org

DNS Database

/ (root)

etc usr bin

Unix Filesystem
Forms a tree structure

ac.uk

lboro.ac.uk

google.com ba.com unesco.org

maps.google.com

usr/local usr/sbin /etc/hosts

usr/local/src

DNS: Root name servers
  contacted by local name server that can not resolve

name
  root name server:

  contacts authoritative name server if name mapping not
known

  returns mapping to top-level name server

b USC-ISI Marina del Rey, CA
l ICANN Marina del Rey, CA

e NASA Mt View, CA
f Internet Software C. Palo Alto,
CA

i NORDUnet Stockholm k RIPE London

m WIDE Tokyo

a NSI Herndon, VA
c PSInet Herndon, VA
d U Maryland College Park, MD
g DISA Vienna, VA
h ARL Aberdeen, MD
j NSI (TBD) Herndon, VA

DNS: iterated queries
recursive query:
  puts burden of

name resolution on
contacted name
server

  heavy load?

iterated query:
  contacted server

replies with name of
server to contact

  “I don’t know this
name, but ask this
server”

requesting host
maps.google.com

maps.google.com

root name server

local name server
agate.lut.ac.uk.

1

2
3

4

5 6

authoritative name server
ns3.google.com

intermediate name server
B.GTLD-SERVERS.NET.

7

8

iterated query

 DNS is Hierarchical (contd.)

  Globally unique names
  Administered in zones (parts of the

tree)
  You can give away ("delegate") control

of part of the tree underneath you
  Example:

  google.com on one set of nameservers
  maps.google.com on a different set
  www.maps.google.com on another set

Domain Names are (almost)
unlimited
  Max 255 characters total length
  Max 63 characters in each part

  RFC 1034, RFC 1035
  If a domain name is being used as a

host name, you should abide by some
restrictions
  RFC 952 (old!)
  a-z 0-9 and minus (-) only
  No underscores (_)

Using the DNS

  A Domain Name (like www.lut.ac.uk) is
the KEY to look up information

  The result is one or more RESOURCE
RECORDS (RRs)

  There are different RRs for different
types of information

  You can ask for the specific type you
want, or ask for "any" RRs associated
with the domain name

Commonly seen Resource
Records (RRs)
  A (address): map hostname to IPv4 address
  AAAA (quad A): map a hostname to IPv6

address
  PTR (pointer): map IP address to hostname
  MX (mail exchanger): where to deliver mail

for user@domain
  CNAME (canonical name): map alternative

hostname to real hostname
  TXT (text): any descriptive text
  NS (name server), SOA (start of authority):

used for delegation and management of the
DNS itself

A Simple Example
  Query: www.lut.ac.uk.
  Query type: A
  Result:

www.lut.ac.uk. 22725 IN A 158.125.1.208

  In this case a single RR is found, but in
general, multiple RRs may be
returned.
  (IN is the "class" for INTERNET use of the

DNS)

Possible results from a Query
  POSITIVE

  one or more RRs found
  NEGATIVE

  definitely no RRs match the query
  SERVER FAIL

  cannot find the answer
  REFUSED

  not allowed to query the server

How do you use an IP address
as the key for a DNS query
  Convert the IP address to dotted-quad
  Reverse the four parts
  Add ".in-addr.arpa." to the end; special

domain reserved for this purpose
e.g. to find name for 158.125.1.208
Domain name: 208.1.125.158.in-addr.arpa.
Query Type: PTR
Result: www.lut.ac.uk.

Known as a "reverse DNS lookup" (because we are
looking up the name for an IP address, rather
than the IP address for a name)

DNS is a Client-Server
application
  (Of course - it runs across a network)
  Requests and responses are normally

sent in UDP packets, port 53
  Occasionally uses TCP, port 53

  for very large requests (larger than 512-
bytes) e.g. zone transfer from master to
slave or an IPv6 AAAA (quad A) record.

There are three roles involved
in DNS

Resolver Caching
Nameserver

Authoritative
Nameserver

Application
e.g. web
browser

Three roles in DNS
  RESOLVER

  Takes request from application, formats it into UDP
packet, sends to cache

  CACHING NAMESERVER
  Returns the answer if already known
  Otherwise searches for an authoritative server which

has the information
  Caches the result for future queries
  Also known as RECURSIVE nameserver

  AUTHORITATIVE NAMESERVER
  Contains the actual information put into the DNS by

the domain owner

Three roles in DNS

  The SAME protocol is used for resolver
<-> cache and cache <-> auth NS
communication

  It is possible to configure a single name
server as both caching and authoritative

  But it still performs only one role for
each incoming query

  Common but NOT RECOMMENDED to
configure in this way (we will see why
later).

ROLE 1: THE RESOLVER

  A piece of software which formats a
DNS request into a UDP packet, sends it
to a cache, and decodes the answer

  Usually a shared library (e.g.
libresolv.so under Unix) because so
many applications need it

  EVERY host needs a resolver - e.g.
every Windows workstation has one

How does the resolver find a
caching nameserver?
  It has to be explicitly configured

(statically, or via DHCP etc)

  Must be configured with the IP
ADDRESS of a cache (why not name?)

  Good idea to configure more than one
cache, in case the first one fails

How do you choose which
cache(s) to configure?
  Must have PERMISSION to use it

  e.g. cache at your ISP, or your own
  Prefer a nearby cache

  Minimises round-trip time and packet loss
  Can reduce traffic on your external link,

since often the cache can answer without
contacting other servers

  Prefer a reliable cache
  Perhaps your own?

Resolver can be configured
with default domain(s)
  If "foo.bar" fails, then retry query as

"foo.bar.mydomain.com"
  Can save typing but adds confusion
  May generate extra unnecessary traffic
  Usually best avoided

Example: Unix resolver
configuration
/etc/resolv.conf

domain lboro.ac.uk
nameserver 158.125.1.100
nameserver 131.231.16.7

That's all you need to configure a resolver

Testing DNS with "dig"

  "dig" is a program which just makes DNS
queries and displays the results

  Better than "nslookup", "host" because it
shows the raw information in full

dig lboro.ac.uk.
 -- defaults to query type "A"
dig lboro.ac.uk. mx
 -- specified query type
dig @8.8.8.8 lboro.ac.uk. mx
 -- send to particular cache (overrides
 /etc/resolv.conf)

The trailing dot

dig lboro.ac.uk.

  Prevents any default domain being
appended

  Get into the habit of using it always
when testing DNS
  only on domain names, not IP addresses or

e-mail addresses

dig lboro.ac.uk.

; <<>> DiG 9.6.0-APPLE-P2 <<>> lboro.ac.uk.
;; global options: +cmd
;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 26566
;; flags: qr aa rd ra; QUERY: 1, ANSWER: 1, AUTHORITY: 4, ADDITIONAL: 7

;; QUESTION SECTION:
;lboro.ac.uk. IN A

;; ANSWER SECTION:
lboro.ac.uk. 86400 IN A 158.125.1.208

;; AUTHORITY SECTION:
lboro.ac.uk. 86400 IN NS cgate.lut.ac.uk.
lboro.ac.uk. 86400 IN NS agate.lut.ac.uk.
lboro.ac.uk. 86400 IN NS bgate.lut.ac.uk.
lboro.ac.uk. 86400 IN NS ns3.ja.net.

;; ADDITIONAL SECTION:
agate.lut.ac.uk. 86400 IN A 158.125.1.100
bgate.lut.ac.uk. 86400 IN A 131.231.16.7
bgate.lut.ac.uk. 86400 IN AAAA 2001:630:301:4605::b53
cgate.lut.ac.uk. 86400 IN A 131.231.16.16
cgate.lut.ac.uk. 86400 IN AAAA 2001:630:301:2905::c53
ns3.ja.net. 21325 IN A 193.63.106.103
ns3.ja.net. 39250 IN AAAA 2001:630:0:46::67

;; Query time: 30 msec
;; SERVER: 158.125.1.100#53(158.125.1.100)
;; WHEN: Sun Dec 6 15:51:52 2009
;; MSG SIZE rcvd: 281

Understanding output from dig
  STATUS

  NOERROR: 0 or more RRs returned
  NXDOMAIN: non-existent domain
  SERVFAIL: cache could not locate answer
  REFUSED: query not available on cache server

  FLAGS
  AA: Authoritative answer (not from cache)
  You can ignore the others

  QR: Query/Response (1 = Response)
  RD: Recursion Desired
  RA: Recursion Available

  ANSWER: number of RRs in answer

Understanding output from dig
  Answer section (RRs requested)

  Each record has a Time To Live (TTL)
  Says how long the cache will keep it

  Authority section
  Which nameservers are authoritative for this domain

  Additional section
  More RRs (typically IP addresses for the authoritative

nameservers)

  Total query time
  Check which server gave the response!

  If you make a typing error, the query may go to a
default server

DNS records

DNS: distributed db storing resource records (RR)

  Type=NS
  name is domain (e.g.

foo.com)
  value is IP address of

authoritative name server
for this domain

RR format: (name, value, type,ttl)

  Type=A
  name is hostname
  value is IP address

  Type=CNAME
  name is alias name for some

“cannonical” (the real) name
  www.lboro.ac.uk is really
  www.lut.ac.uk.

  value is cannonical name

  Type=MX
  value is name of mailserver

associated with name

DNS protocol, messages

DNS protocol : query and reply messages, both with same
message format

msg header
  identification: 16 bit #

for query, reply to query
uses same #

  flags:
  query or reply
  recursion desired
  recursion available
  reply is authoritative

DNS protocol, messages

Name, type fields
 for a query

RRs in reponse
to query

records for
authoritative servers

additional “helpful”
info that may be used

HTTP

(Hypertext Transfer Protocol)

HTTP overview
HTTP: hypertext transfer

protocol
  Web’s application layer

protocol
  client/server model

  client: browser that
requests, receives,
“displays” Web objects

  server: Web server sends
objects in response to
requests

  HTTP 1.0: RFC 1945
  HTTP 1.1: RFC 2068

PC running
Explorer

Server
running

Apache Web
server

Mac running
Safari

HTTP overview (continued)
Uses TCP:
  client initiates TCP

connection (creates socket)
to server, port 80

  server accepts TCP
connection from client

  HTTP messages
(application-layer protocol
messages) exchanged
between browser (HTTP
client) and Web server
(HTTP server)

  TCP connection closed

HTTP is “stateless”
  server maintains no

information about
past client requests

Protocols that maintain
“state” are complex!

  past history (state) must
be maintained

  if server/client crashes,
their views of “state” may
be inconsistent, must be
reconciled

aside

HTTP connections

Nonpersistent HTTP
  At most one object is

sent over a TCP
connection.

  HTTP/1.0 uses
nonpersistent HTTP

Persistent HTTP
  Multiple objects can

be sent over single
TCP connection
between client and
server.

  HTTP/1.1 uses
persistent
connections in
default mode

Nonpersistent HTTP

Suppose user enters URL:
http://www.someSchool.edu/someDepartment/home.index

1a. HTTP client initiates TCP
connection to HTTP server
(process) at
www.someSchool.edu on
port 80

1b. HTTP server at host
www.someSchool.edu waiting
for TCP connection at port 80.
“accepts” connection,
notifying client

3. HTTP server receives
request message, forms
response message containing
requested object, and sends
message into its socket time

(contains text,
references to 10

jpeg images)

2. HTTP client sends HTTP
request message (containing
URL) into TCP connection
socket. Message indicates
that client wants object
someDepartment/home.index

Nonpersistent HTTP (cont.)
5. HTTP client receives

response message
containing html file, displays
html. Parsing html file, finds
10 referenced jpeg objects

6. Steps 1-5 repeated for each
of 10 jpeg objects

4. HTTP server closes TCP
connection.

time

Response time modeling
Definition of RTT: time to send

a small packet to travel
from client to server and
back.

Response time:
  one RTT to initiate TCP

connection
  one RTT for HTTP request

and first few bytes of HTTP
response to return

  file transmission time
total = 2RTT+transmit time

time to
transmit
file

initiate TCP
connection

RTT

request
file

RTT

file
received

time time

Persistent HTTP

Nonpersistent HTTP issues:
  requires 2 RTTs per object
  OS must work and allocate host

resources for each TCP
connection

  but browsers often open
parallel TCP connections to
fetch referenced objects

Persistent HTTP
  server leaves connection open

after sending response
  subsequent HTTP messages

between same client/server are
sent over connection

Persistent without
pipelining:

  client issues new request
only when previous
response has been
received

  one RTT for each
referenced object

Persistent with pipelining:
  default in HTTP/1.1
  client sends requests as

soon as it encounters a
referenced object

  as little as one RTT for all
the referenced objects

HTTP request message

  two types of HTTP messages: request, response
  HTTP request message:

  ASCII (human-readable format)

GET /somedir/page.html HTTP/1.1
Host: www.someschool.edu
User-agent: Mozilla/4.0
Connection: close
Accept-language:en

(extra carriage return, line feed)

request line
(GET, POST,

HEAD commands)

header
 lines

Carriage return,
line feed

indicates end
of message

HTTP request message:
general format

Uploading form input

Post method:
  Web page often includes

form input
  Input is uploaded to

server in entity body

URL method:
  Uses GET method
  Input is uploaded in

URL field of request
line:

www.somesite.com/animalsearch?monkeys&banana

Method types

HTTP/1.0
  GET
  POST
  HEAD

  asks server to leave
requested object out of
response

HTTP/1.1
  GET, POST, HEAD
  PUT

  uploads file in entity
body to path specified
in URL field

  DELETE
  deletes file specified

in the URL field

Conditional GET: client-side
caching

  Goal: don’t send
object if client has up-
to-date cached version

  client: specify date of
cached copy in HTTP
request
If-modified-since:

<date>

  server: response
contains no object if
cached copy is up-to-
date:
HTTP/1.0 304 Not

Modified

client server

HTTP request msg
If-modified-since:

<date>

HTTP response
HTTP/1.0

304 Not Modified

object
not

modified

HTTP request msg
If-modified-since:

<date>

HTTP response
HTTP/1.0 200 OK

<data>

object
modified

HTTP response message

HTTP/1.1 200 OK
Connection close
Date: Sun, 06 Dec 2009 12:00:15 GMT
Server: Apache/1.3.0 (Unix)
Last-Modified: Fri, 04 Dec 2009...
Content-Length: 6821
Content-Type: text/html

data data data data data ...

status line
(protocol

status code
status phrase)

header
 lines

data, e.g.,
requested
HTML file

HTTP response status codes

200 OK
  request succeeded, requested object later in this

message

301 Moved Permanently
  requested object moved, new location specified later

in this message (Location:)

400 Bad Request
  request message not understood by server

404 Not Found
  requested document not found on this server

505 HTTP Version Not Supported

In first line in server->client response message.
A few sample codes:

Trying out HTTP (client side) for yourself

1. Telnet to your favorite Web server:

Opens TCP connection to port 80
(default HTTP server port).
Anything typed in sent
to port 80 at www.lut.ac.uk.

telnet www.lboro.ac.uk 80

2. Type in a GET HTTP request:

GET /index.html HTTP/1.0 By typing this in (hit carriage
return twice), you send
this minimal (but complete)
GET request to HTTP server

3. Look at response message sent by HTTP server!

Cookies: keeping “state”
Many major Web sites use

cookies
Four components:

1) cookie header line in the HTTP
response message

2) cookie header line in HTTP
request message

3) cookie file kept on user’s host
and managed by user’s browser

4) back-end database at Web site

Example:
  Susan access Internet

always from same PC
  She visits a specific

e-commerce site for
first time

  When initial HTTP
requests arrives at
site, site creates a
unique ID and creates
an entry in backend
database for ID

Cookies: keeping “state” (cont.)

client server
usual http request msg
usual http response +
Set-cookie: 1678

usual http request msg
cookie: 1678

usual http response msg

usual http request msg
cookie: 1678

usual http response msg

cookie-
specific
action

cookie-
spectific
action

server
creates ID

1678 for user

access

Cookie file

amazon: 1678
ebay: 8734

Cookie file

ebay: 8734

Cookie file

amazon: 1678
ebay: 8734

one week later:

Cookies (continued)

What cookies can bring:
  authorization
  shopping carts
  recommendations
  user session state

(Web e-mail)

Cookies and privacy:
  cookies permit sites to

learn a lot about you
  you may supply name

and e-mail to sites
  search engines use

redirection & cookies to
learn yet more

  advertising companies
obtain info across sites

aside

User-server interaction:
authorization
Authorization: control access

to server content
  authorization credentials:

typically name, password
  stateless: client must

present authorization in
each request
  authorization: header

line in each request
  if no authorization:

header, server refuses
access, sends

WWW authenticate:
header line in

response

client server
usual http request msg

401: authorization req.
WWW authenticate:

usual http request msg
+ Authorization: <cred>

usual http response msg

usual http request msg
+ Authorization: <cred>

usual http response msg time

CDNs

(Content Distribution Networks)

Web caches (proxy server)

  user sets browser: Web
accesses via cache

  browser sends all HTTP
requests to cache
  object in cache: cache

returns object
  else cache requests

object from origin server,
then returns object to
client

Goal: satisfy client request without involving origin server

client

Proxy
server

client

origin
server

More about Web caching
  Cache acts as both client and

server
  Cache can do up-to-date check

using If-modified-since
HTTP header
  Issue: should cache take risk

and deliver cached object
without checking?

  Heuristics are used.
  Typically cache is installed by

ISP (university, company,
residential ISP)

Why Web caching?
  Reduce response time for

client request.
  Reduce traffic on an

institution’s access link.
  Internet dense with

caches enables “poor”
content providers to
effectively deliver
content

Content distribution networks
(CDNs)

  The content providers are
the CDN customers.

Content replication
  CDN company installs

hundreds of CDN servers
throughout Internet
  in lower-tier ISPs, close

to users
  CDN replicates its

customers’ content in CDN
servers. When provider
updates content, CDN
updates servers

origin server
in North America

CDN distribution node

CDN server
in S. America

CDN server
in Europe

CDN server
in Asia

CDN example

origin server
  www.foo.com
  distributes HTML
  Replaces:
 http://www.foo.com/sports.ruth.gif

 with
http://www.cdn.com/www.foo.com/sports/
ruth.gif

HTTP request for
http://www.foo.com/sports/sports.html

DNS query for www.cdn.com

HTTP request for
http://www.cdn.com/www.foo.com/sports/ruth.gif

1
2

3

Origin server

CDNs authoritative DNS server

Nearby CDN server

CDN company
  cdn.com
  distributes gif files
  uses its authoritative

DNS server to route
redirect requests

FTP

(File Transfer Protocol)

FTP: the file transfer protocol

  transfer file to/from remote host
  client/server model

  client: side that initiates transfer (either to/from remote)
  server: remote host

  ftp: RFC 959
  ftp server: port 21

file transfer
FTP

server
FTP user
interface

FTP
client

local file
system

remote file
system

user
at host

FTP: separate control, data connections
  FTP client contacts FTP

server at port 21, specifying
TCP as transport protocol

  Client obtains authorization
over control connection

  Client browses remote
directory by sending
commands over control
connection.

  When server receives a
command for a file transfer,
the server opens a TCP data
connection to client

  After transferring one file,
server closes connection.

FTP
client

FTP
server

TCP control connection
port 21

TCP data connection
port 20

  Server opens a second TCP
data connection to transfer
another file.

  Control connection: “out of
band”

  FTP server maintains
“state”: current directory,
earlier authentication

FTP commands, responses

Sample commands:
  sent as ASCII text over

control channel
  USER username
  PASS password
  LIST return list of file in

current directory
  RETR filename retrieves

(gets) file
  STOR filename stores

(puts) file onto remote
host

Sample return codes
  status code and phrase

(as in HTTP)
  331 Username OK,

password required
  125 data connection

already open; transfer
starting

  425 Can’t open data
connection

  452 Error writing file

E-Mail

(SMTP, POP, IMAP)

Electronic Mail
Three major components:
  user agents
  mail servers
  simple mail transfer protocol:

SMTP

User Agent
  a.k.a. “mail reader”
  composing, editing, reading mail

messages
  e.g., Eudora, Outlook, mutt,

Apple Mail
  outgoing, incoming messages

stored on server

user
agent

SMTP

SMTP

SMTP

user
agent

user
agent

user
agent

user
agent

user
agent

Electronic Mail

user
agent

SMTP

SMTP

SMTP

user
agent

user
agent

user
agent

user
agent

user
agent

Mail Servers
  mailbox contains incoming

messages for user
  message queue of outgoing

(to be sent) mail messages
  SMTP protocol between mail

servers to send email
messages
  client: sending mail server
  “server”: receiving mail

server

Electronic Mail: SMTP [RFC 2821]

  uses TCP to reliably transfer email message from client
to server, port 25

  direct transfer: sending server to receiving server
  three phases of transfer

  handshaking (greeting)
  transfer of messages
  closure

  command/response interaction
  commands: ASCII text
  response: status code and phrase

  messages must be in 7-bit ASCII

Scenario: Alice sends message
to Bob
1) Alice composes a message

“to” bob@someschool.edu
2) Alice’s user agent sends

message to her mail
server; message placed in
message queue

3) Client side of SMTP opens
TCP connection with Bob’s
mail server

4) SMTP client sends Alice’s
message over the TCP
connection

5) Bob’s mail server places
the message in Bob’s
mailbox

6) Bob invokes his user
agent to read message

1

2 3 4 5 6 user
agent user

agent

Sample SMTP interaction
 S: 220 hamburger.edu
 C: HELO crepes.fr
 S: 250 Hello crepes.fr, pleased to meet you
 C: MAIL FROM: <alice@crepes.fr>
 S: 250 alice@crepes.fr... Sender ok
 C: RCPT TO: <bob@hamburger.edu>
 S: 250 bob@hamburger.edu ... Recipient ok
 C: DATA
 S: 354 Enter mail, end with "." on a line by itself
 C: Do you like ketchup?
 C: How about pickles?
 C: .
 S: 250 Message accepted for delivery
 C: QUIT
 S: 221 hamburger.edu closing connection

Try SMTP interaction for
yourself:
  telnet servername 25
  see 220 reply from server
  enter HELO, MAIL FROM, RCPT TO, DATA,

QUIT commands
 above lets you send email without using email
client (reader)

SMTP: final words
  SMTP uses persistent

connections
  SMTP requires message

(header & body) to be in 7-
bit ASCII

Comparison with HTTP:
  HTTP: pull
  SMTP: push

  both have ASCII
command/response
interaction, status codes

  HTTP: each object
encapsulated in its own
response msg

  SMTP: multiple objects
sent in multipart msg

Mail message format
SMTP: protocol for

exchanging email msgs
RFC 822: standard for text

message format:
  header lines, e.g.,

  To:
  From:
  Subject:
different from SMTP

commands!
  body

  the “message”, ASCII
characters only

header

body

blank
line

Message format: multimedia
extensions
  MIME: multimedia mail extension, RFC 2045, 2056
  additional lines in msg header declare MIME content

type

From: alice@crepes.fr
To: bob@hamburger.edu
Subject: Picture of yummy crepe.
MIME-Version: 1.0
Content-Transfer-Encoding: base64
Content-Type: image/jpeg

base64 encoded data
.........................
......base64 encoded data

multimedia data
type, subtype,

param. declaration

method used
to encode data

MIME version

encoded data

MIME types
Content-Type: type/subtype; parameters
Text
  example subtypes: plain,

html

Image
  example subtypes: jpeg, gif

Audio
  example subtypes: basic (8-

bit mu-law encoded), 32kadpcm
(32 kbps coding)

Video
  example subtypes:

mpeg, quicktime

Application
  other data that must be

processed by reader
before “viewable”

  example subtypes:
msword, octet-stream

Multipart Type
From: alice@crepes.fr
To: bob@hamburger.edu
Subject: Picture of yummy crepe.
MIME-Version: 1.0
Content-Type: multipart/mixed; boundary=StartOfNextPart

--StartOfNextPart
Dear Bob, Please find a picture of a crepe.
--StartOfNextPart
Content-Transfer-Encoding: base64
Content-Type: image/jpeg
base64 encoded data
.........................
......base64 encoded data
--StartOfNextPart
Do you want the recipe?

POP3
  Short for Post Office Protocol, a protocol

used to retrieve e-mail from a mail server.
  Still most e-mail applications use the POP

protocol, although some can use the newer
IMAP (Internet Message Access Protocol).

  There are two versions of POP. The first, called
POP2, became a standard in the mid-80's and
requires SMTP to send messages. The newer
version, POP3, can be used with or without
SMTP. POP3 uses TCP/IP port 110.

POP3 protocol

authorization phase
  client commands:

  user: declare username
  pass: password

  server responses
  +OK
  -ERR

transaction phase, client:
  list: list message numbers
  retr: retrieve message by

 number
  dele: delete
  quit

 C: list
 S: 1 498
 S: 2 912
 S: .
 C: retr 1
 S: <message 1 contents>
 S: .
 C: dele 1
 C: retr 2
 S: <message 1 contents>
 S: .
 C: dele 2
 C: quit
 S: +OK POP3 server signing off

S: +OK POP3 server ready
C: user bob
S: +OK
C: pass hungry
S: +OK user successfully logged on

POP3 (more) and IMAP
More about POP3
  Previous example uses

“download and delete”
mode.

  Bob cannot re-read e-
mail if he changes client

  “Download-and-keep”:
copies of messages on
different clients

  POP3 is stateless across
sessions

IMAP
  Keep all messages in

one place: the server
  Allows user to organize

messages in folders
  IMAP keeps user state

across sessions:
  names of folders and

mappings between
message IDs and folder
name

IMAP
  IMAP is an Internet Message Access

Protocol. It is a method of accessing
electronic mail messages that are kept on a
possibly shared mail server. In other words, it
permits a "client" email program to access
remote message stores as if they were local.
For example, email stored on an IMAP server
can be manipulated from a desktop computer
at home, a workstation at the office, and a
notebook computer while travelling, without
the need to transfer messages or files back
and forth between these computers.

  IMAP uses TCP/IP port 143.

POP3 vs IMAP
  With IMAP, all your mail stays on the server in multiple

folders, some of which you have created. This enables
you to connect to any computer and see all your mail
and mail folders. In general, IMAP is great if you have a
dedicated connection to the Internet or you like to
check your mail from various locations.

  With POP3 you only have one folder, the Inbox folder.
When you open your mailbox, new mail is moved from
the host server and saved on your computer. If you
want to be able to see your old mail messages, you
have to go back to the computer where you last opened
your mail.

  With POP3 "leave mail on server" only your email
messages are on the server, but with IMAP your email
folders are also on the server.

Test POP3 and IMAP …..
  # telnet localhost 143
  Connected to staff-mail.lboro.ac.uk.
  Escape character is '^]'.
  * OK [CAPABILITY IMAP4rev1 UIDPLUS CHILDREN NAMESPACE

THREAD=ORDEREDSUBJECT
  THREAD=REFERENCES SORT QUOTA IDLE ACL ACL2=UNION STARTTLS]

Courier-IMAP ready.
  Copyright 1998-2005 Double Precision, Inc. See COPYING for distribution

information.
  a login username password
  a OK LOGIN Ok.
  a examine inbox
  * FLAGS (\Answered \Flagged \Deleted \Seen \Recent)
  * OK [PERMANENTFLAGS ()] No permanent flags permitted
  * 26 EXISTS
  * 0 RECENT
  * OK [UIDVALIDITY 989061119] Ok
  * OK [READ-ONLY] Ok
  a logout
  * BYE Courier-IMAP server shutting down
  a OK LOGOUT completed
  Connection closed by foreign host.

Exim
  Exim is an open source mail transfer agent (MTA),

which is a program responsible for receiving, routing,
and delivering e-mail messages (this type of program is
sometimes referred to as an Internet mailer, or a mail
server program). MTAs receive e-mail messages and
recipient addresses from local users and remote hosts,
perform alias creation and forwarding functions, and
deliver the messages to their destinations. Exim was
developed at the University of Cambridge for the use of
Unix systems connected over the Internet. The software
can be installed in place of sendmail, the most common
MTA for UNIX and Linux systems. In comparison to
sendmail, Exim is said to feature more straightforward
configuration and task management.

Network Address Translation

(NAT)

NAT: Network Address
Translation
  Motivation: local network uses just one IP

address as far as outside word is
concerned:
  no need to be allocated range of addresses from

ISP: just one IP address is used for all devices
  can change addresses of devices in local

network without notifying outside world
  can change ISP without changing addresses of

devices in local network
  devices inside local net not explicitly

addressable, visible by outside world (a security
plus).

Private Network
  Private IP network is an IP network that is not

directly connected to the Internet
  IP addresses in a private network can be

assigned arbitrarily.
  Not registered and not guaranteed to be globally

unique

  Generally, private networks use addresses
from the following experimental address
ranges (non-routable addresses):
  10.0.0.0 – 10.255.255.255
  172.16.0.0 – 172.31.255.255
  192.168.0.0 – 192.168.255.255

Private Addresses

NAT: Network Address
Translation

10.0.0.1

10.0.0.2

10.0.0.3

10.0.0.4

138.76.29.7

local network
(e.g., home network)

10.0.0/24

rest of
Internet

Datagrams with source or
destination in this network
have 10.0.0/24 address for

source, destination (as usual)

All datagrams leaving local
network have same single
source NAT IP address:

138.76.29.7,
different source port numbers

NAT: Network Address
Translation
Implementation: NAT router must:

  outgoing datagrams: replace (source IP address,
port #) of every outgoing datagram to (NAT IP
address, new port #)
. . . remote clients/servers will respond using (NAT

IP address, new port #) as destination addr.

  remember (in NAT translation table) every (source IP
address, port #) to (NAT IP address, new port #)
translation pair

  incoming datagrams: replace (NAT IP address, new
port #) in dest fields of every incoming datagram
with corresponding (source IP address, port #)
stored in NAT table

NAT: Network Address
Translation

10.0.0.4

10.0.0.2

10.0.0.3

S: 10.0.0.4, 3345
D: 128.119.40.186, 80

1
10.0.0.1

138.76.29.7

1: host 10.0.0.4
sends datagram to
128.119.40, 80

NAT translation table
WAN side addr LAN side addr

138.76.29.7, 5001 10.0.0.4, 3345
…… ……

S: 128.119.40.186, 80
D: 10.0.0.1, 3345 4

S: 138.76.29.7, 5001
D: 128.119.40.186, 80 2

2: NAT gw changes
datagram source
addr from 10.0.0.4,
3345 to
138.76.29.7, 5001,
updates table

S: 128.119.40.186, 80
D: 138.76.29.7, 5001 3

3: Reply arrives
 dest. address:
 138.76.29.7, 5001

4: NAT router
changes datagram
dest addr from
138.76.29.7, 5001 to 10.0.0.4, 3345

NAT: Network Address
Translation
  16-bit port-number field:

  60,000 simultaneous connections with a single LAN-
side address!

  NAT is controversial:
  violates end-to-end argument

  NAT possibility must be taken into account by app
designers, eg, P2P applications

  address shortage should instead be solved by IPv6

Simple NAT

NAT

(Private IP
addresses)

(Public IP addresses)

Main
Internet

(Public IP addresses)

Provider NATs? Considered
Harmful

ISP
NAT

(Private IP
adresses)

(Public IP addresses)

Main
Internet

ISP
network

Home
NAT

Home
network

10.0.0.12

192.168.2.12

192.168.2.99

156.148.70.32

NAT traversal: relay

NAT

Main
Internet

Local
network

NAT

Local
network

10.0.0.12
192.168.2.99

Relay S

host A

host B

1 2

TURN protocol

  Protocol for UDP/TCP relaying behind
NAT

  Data is bounced to a public TURN server
  No hole punching
  TURN works even behind symmetric

NAT

Hole punching

  Technique to allow traffic from/to a host
behind a firewall/NAT without
collaboration of the NAT itself

  UDP: simple
  TCP:

  Berkeley sockets allows TCP socket to
initiate an outgoing or listen for an incoming
connections
but not both

  Solution: bind multiple sockets to same
local endpoint

STUN (RFC 3489)

  Defines operations and message
formats to understand type of NAT

  Discovers presence and type of NAT and
firewalls between them and Internet

  Allows applications to determine their
public NAT IP address

STUNT

  Simple Traversal of UDP Through NATs
and TCP too (STUNT)

  Extends STUN to include TCP
functionality

Configuring NAT in Linux
  Linux uses the Netfilter/iptable package to add

filtering rules to the IP module

Configuring NAT with iptable
  First example:

iptables –t nat –A POSTROUTING –s 10.0.1.2
 –j SNAT --to-source 128.143.71.21

  Pooling of IP addresses:
iptables –t nat –A POSTROUTING –s 10.0.1.0/24
 –j SNAT --to-source 128.128.71.0–128.143.71.30

  ISP migration:
 iptables –t nat –R POSTROUTING –s 10.0.1.0/24
 –j SNAT --to-source 128.195.4.0–128.195.4.254

  IP masquerading:
 iptables –t nat –A POSTROUTING –s 10.0.1.0/24
 –o eth1 –j MASQUERADE

  Load balancing:
 iptables -t nat -A PREROUTING -i eth1 -j DNAT --to-
destination 10.0.1.2-10.0.1.4

Multimedia Networking

Multimedia, Quality of Service (QoS): What is it?

Multimedia applications:
Network audio and video
(“continuous media”)

Network provides
application with level of
performance needed for
application to function.

QoS

Goals

Principles
  Classify multimedia applications
  Identify the network services the apps

need
  Making the best of best effort service
Protocols and architectures
  Specific protocols for best-effort
  Architectures for QoS

MM networking applications
Fundamental

characteristics:
  Typically delay

sensitive
  End-to-end delay
  Delay jitter

  But loss tolerant:
infrequent losses
cause minor glitches

  Antithesis of data,
which are loss
intolerant but delay
tolerant.

Classes of MM applications:
1) Streaming stored audio

 and video
2) Streaming live audio

 and video
3) Real-time interactive

 audio and video

Jitter is the variability
of packet delays within
the same packet stream

Streaming stored multimedia

  Streaming:
  Media stored at source
  Transmitted to client

  Streaming: client playout begins before all
data has arrived

  Timing constraint for still-to-be transmitted
data: in time for playout

Streaming stored multimedia:
What is it?

1. video
recorded

2. video
sent

3. video received,
played out at client

C
um

ul
at

iv
e

da
ta

Streaming: at this time, client
playing out early part of video,
while server still sending later
part of video

network
delay

time

Streaming live multimedia
Examples:
  Internet radio talk show
  Live sporting event
Streaming
  Playback buffer
  Playback can lag tens of seconds after

transmission
  Still have timing constraint
Interactivity
  Fast forward impossible
  Rewind, pause possible!

Interactive, real-time
multimedia

  End-end delay requirements:
  Audio: < 150 msec good, < 400 msec OK

  Includes application-level (packetization) and network
delays

  Higher delays noticeable, impair interactivity

  Session initialization
  How does callee advertise its IP address, port

number, encoding algorithms?

  Applications: IP telephony,
video conference, distributed
interactive worlds

A few words about audio
compression

  Analog signal sampled
at constant rate
  Telephone: 8,000

samples/sec
  CD music: 44,100

samples/sec

  Each sample quantized,
i.e., rounded
  E.g., 28=256 possible

quantized values

  Each quantized value
represented by bits
  8 bits for 256 values

  Example: 8,000
samples/sec, 256
quantized values -->
64,000 bps

  Receiver converts it
back to analog signal:
  Some quality reduction

Example rates
  CD: 1.411 Mbps
  MP3: 96, 128, 160 kbps
  Internet telephony:

5.3 - 13 kbps

 constant bit
 rate video
transmission

C
um

ul
at

iv
e

da
ta

time

variable
network

delay

client video
reception

 constant bit
 rate video
 playout at client

client
playout
delay

bu
ff

er
ed

vi

de
o

Streaming multimedia: Client
buffering

  Client-side buffering, playout delay
compensate for network-added delay,
delay jitter

Packet loss and delay
  Network loss: IP datagram lost due to network

congestion (router buffer overflow)
  Delay loss: IP datagram arrives too late for

playout at receiver
  Delays: processing, queuing in network; end-system

(sender, receiver) delays
  Typical maximum tolerable delay: 400 ms

  Loss tolerance: depending on voice encoding,
losses concealed, packet loss rates between
1% and 10% can be tolerated.

Multimedia over today’s Internet
TCP/UDP/IP: “best-effort service” no “QoS”
  No guarantees on delay, loss

Today’s Internet multimedia applications
use application-level techniques to mitigate

(as best possible) effects of delay, loss

But you said multimedia apps requires
QoS and level of performance to be

effective!

? ? ? ?
?

?

? ?
?

?

?

How should the Internet evolve
to better support multimedia?
Integrated services philosophy:
  Fundamental changes in

Internet so that apps can
reserve end-to-end
resources
including bandwidth

  Requires new, complex
software in hosts & routers

Laissez-faire:
  No major changes
  More bandwidth when

needed
  Content distribution,

application-layer multicast
  Application layer

Differentiated services
philosophy:

  Fewer changes to Internet
infrastructure, yet provide
1st and 2nd class service

Improving QOS in IP Networks
Thus far: “making the best of best effort”
Future: next generation Internet with QoS

guarantees
  RSVP: signaling for resource reservations
  Differentiated Services: differential guarantees
  Integrated Services:

firm guarantees

  simple model
for sharing and
congestion
studies:

Principles for QOS Guarantees
  Example: 1Mbps IP phones and FTP/p2p

share 1.5 Mbps link.
  bursts of FTP can congest router, cause audio

loss
  want to give

priority to
audio over
FTP

packet marking needed for router to
distinguish between different classes; and
new router policy to treat packets accordingly

Principle 1

Principles for QOS Guarantees
  what if applications misbehave (audio sends higher than

declared rate)
  policing: force source adherence to bandwidth allocations

  marking and policing at network edge:

  similar to ATM UNI (User Network Interface)

provide protection (isolation) for one class from others
Principle 2

Principles for QOS Guarantees
  Allocating fixed (non-sharable)

bandwidth to flow: inefficient use of
bandwidth if flows doesn’t use its
allocation

While providing isolation, it is desirable to
use resources as efficiently as possible

Principle 3

Principles for QOS Guarantees

  Basic fact of life: can not support traffic
demands beyond link capacity

Call Admission: flow declares its needs, network may
block call (e.g., busy signal) if it cannot meet needs

Principle 4

Summary of QoS Principles

Scheduling And Policing
Mechanisms
  scheduling: choose next packet to send on

link
  FIFO (first in first out) scheduling: send in

order of arrival to queue
  discard policy: if packet arrives to full queue:

who to discard?
  Tail drop: drop arriving packet
  priority: drop/remove on priority basis
  random: drop/remove randomly

Scheduling Policies: more
Priority scheduling: transmit highest

priority queued packet
  multiple classes, with different priorities

  class may depend on marking or other
header info, e.g. IP source/dest, port
numbers, etc..

Scheduling Policies: still more

round robin scheduling:
  multiple classes
  cyclically scan class queues, serving one

from each class (if available)

Scheduling Policies: still more

Weighted Fair Queuing:
  generalized Round Robin
  each class gets weighted amount of

service in each cycle

IETF Differentiated Services

Diffserv approach:
  simple functions in network core,

relatively complex functions at edge
routers (or hosts)

  Do’t define define service classes,
provide functional components to build
service classes

Edge router:
  per-flow traffic

management
  marks packets as in-profile

and out-profile

Core router:
  per class traffic management
  buffering and scheduling

based on marking at edge
  preference given to in-profile

packets
  Assured Forwarding

Diffserv Architecture scheduling

. . .

marking

  class-based marking: packets of different classes marked
differently

  intra-class marking: conforming portion of flow marked
differently than non-conforming one

  profile: pre-negotiated rate A, bucket size B
  packet marking at edge based on per-flow profile

Possible usage of marking:

User packets

Rate A

B

Edge router pckt marking

Classification and Conditioning

  Packet is marked in the Type of Service
(TOS) in IPv4, and Traffic Class in IPv6

  6 bits used for Differentiated Service
Code Point (DSCP) and determine PHB
that the packet will receive

  2 bits are currently unused

Classification and Conditioning

may be desirable to limit traffic injection
rate of some class:

  user declares traffic profile (e.g., rate,
burst size)

  traffic metered, shaped if non-
conforming

Firewalls

156

Firewalls

isolates organization’s internal net from larger Internet,
allowing some packets to pass, blocking others.

firewall

Internet privately administered

222.22/16

By conventional definition, a firewall is a partition made
of fireproof material designed to prevent the spread
of fire from one part of a building to another.

Firewall goals

  All traffic from outside to inside and
vice-versa passes through the firewall.

  Only authorized traffic, as defined by
local security policy, will be allowed to
pass.

  The firewall itself is immune to
penetration.

Firewalls: taxonomy
1.  Traditional packet

filters
  filters often combined

with router, creating
a firewall

2.  Stateful filters
3.  Application

gateways

Major firewall vendors:
Checkpoint
Cisco PIX

Traditional packet filters

  source IP address
  destination IP

address
  source port
  destination port
  TCP flag bits

  SYN bit set: datagram
for connection
initiation

  ACK bit set: part of
established
connection

  TCP or UDP or ICMP
  Firewalls often

configured to block all
UDP

  direction
  Is the datagram

leaving or entering
the internal network?

  router interface
  decisions can be

different for different
interfaces

Analyzes each datagram going through it; makes
drop decision based on:

Filtering Rules - Examples

Policy Firewall Setting
No outside Web access. Drop all outgoing packets to

any IP address, port 80
Outside connections to
public Web server only.

Drop all incoming TCP SYN
packets to any IP except
130.207.244.203, port 80

Prevent Web-radios from
eating up the available
bandwidth.

Drop all incoming UDP packets
- except DNS and router
broadcasts.

Prevent your network
from being used for a
Smuft DoS attack.

Drop all ICMP packets going
to a “broadcast” address (eg
130.207.255.255).

Prevent your network
from being tracerouted

Drop all incoming ICMP

Access control lists

action
source

address
dest

address
protocol

source
port

dest
port

flag
bit

allow 222.22/16
outside of
222.22/16 TCP > 1023 80

any

allow outside of
222.22/16

222.22/16
TCP 80 > 1023 ACK

allow 222.22/16
outside of
222.22/16 UDP > 1023 53 ---

allow outside of
222.22/16

222.22/16
UDP 53 > 1023 ----

deny all all all all all all

Apply rules from top to bottom:

Access control lists

  Each router/firewall interface can have
its own ACL

  Most firewall vendors provide both
command-line and graphical
configuration interface

Advantages and disadvantages of
traditional packet filters
  Advantages

  One screening router can protect entire network
  Can be efficient if filtering rules are kept simple
  Widely available. Almost any router, even Linux

boxes

  Disadvantages
  Can be penetrated
  Cannot enforce some policies. For example, permit

certain users.
  Rules can get complicated and difficult to test

Firewall Lab: iptables
  Converts linux box into a packet filter.
  Part of most linux distributions today.

linux
host

linux
host w/
iptables

student
network

your job:
configure

Firewall lab: iptables

  iptables
  Provides firewall capability to a linux host
  Comes installed with linux Fedora
  With other versions of Linux, may need to

install RPM

Chain types

linux
host w/
iptables

protected
network

Internet

linux
host w/
iptables

protected
network

Internet

linux
host w/
iptables

protected
network

Internet

INPUT
chain

OUTPUT
chain

FORWARD
chain

iptables: Example command
iptables –A INPUT –i eth0 –s 232.16.4.0/24 –j ACCEPT

  Sets a rule
  Accepts packets that enter from interface eth0

and have source address in 232.16.4/24
  Kernel applies the rules in order.

  The first rule that matches packet determines
the action for that packet

  Append: -A
  Adds rule to bottom of list of existing rules

iptables: More examples
iptables –L

  list current rules
iptables –F

  flush all rules
iptables – D INPUT 2

  deletes 2nd rule in INPUT chain
iptables –I INPUT 1 –p tcp –tcp-flags SYN –s

232.16.4.0/24 –d 0/0:22 –j ACCEPT
  -I INPUT 1, put rule at top
  Accept TCP SYNs to port 22 (ssh) from

232.16.4.0/24

iptables Options

-p protocol type (tcp, udp, icmp)

-s source IP address & port number
-d dest IP address & port number
-i interface name (lo, ppp0, eth0)

-j target (ACCEPT, DENY)
-l log this packet
--sport source port

--dport dest port
--icmp-type

Firewall Lab: Part A
  Rules for outgoing traffic:

  Your local machine should be able to communicate
with the student network without any restrictions.

  Rules for incoming traffic:
  All incoming connection requests should be rejected,

with the following exception:
  Your machine should respond to Ping from network

10.0.0/24
  Your machine should accept all incoming SSH, HTTP,

FTP requests from Network 10.0/16
  Your machine should accept all incoming telnet

connections from the machine 10.0.0.1 and
10.0.0.110.

  All multicast traffic should be allowed
  OSPF traffic should be allowed

Firewall Lab: Part B
  Rules for outgoing traffic from internal node:

  Outgoing SSH, and ICMP traffic should be allowed
  All multicast traffic should be allowed
  OSPF traffic should be allowed
  All other traffic should be blocked

  Rules for incoming traffic to protected server:
  All incoming SSH, http, SMTP, Ping, and anonymous

ftp should be permitted
  All multicast traffic should be allowed
  OSPF traffic should be allowed
  All other incoming traffic should be blocked

Stateful Filters

  In previous example, any packet with
ACK=1 and source port 80 gets in.
  Attacker could, for example, attempt a

malformed packet attack by sending ACK=1
segments

  Stateful filter: Adds more intelligence to
the filter decision-making process
  Stateful = remember past packets
  Memory implemented in a very dynamic

state table

Stateful filters: example

source
address

dest
address

source
port

dest
port

222.22.1.7 37.96.87.123 12699 80

222.22.93.2
199.1.205.23 37654 80

222.22.65.143 203.77.240.43 48712 80

If rule table indicates that stateful table must be checked:
check to see if there is already a connection in stateful table

  Log each TCP connection initiated through firewall: SYN segment
  Timeout entries which see no activity for, say, 60 seconds

Stateful filters can also remember outgoing UDP segments

Stateful example

action
source

address
dest

address
proto

source
port

dest
port

flag
bit

check
conxion

allow 222.22/16
outside of
222.22/16

TCP > 1023 80
any

allow outside of
222.22/16

222.22/16
TCP 80 > 1023 ACK x

allow 222.22/16
outside of
222.22/16

UDP > 1023 53 ---

allow outside of
222.22/16

222.22/16
UDP 53 > 1023 ---- x

deny all all all all all all

1)  Packet arrives from outside: SA=37.96.87.123, SP=80,
DA=222.22.1.7, DP=12699, SYN=0, ACK=1

2)  Check filter table ➜ check stateful table

3) Connection is listed in connection table ➜ let packet through

Demarcation Zone (DMZ)

Web
server

FTP
server

DNS
server

application
gateway

Internet

Demilitarized zone

Internal
network

firewall

