
Internet Exchange Points (IXPs)

Introduction to Internet
Exchange Points
  A bit of history
  What are they?
  Why use them?
  Design Considerations

A Bit of History…

  End of NSFnet – one major backbone
  Move towards commercial Internet

  Private companies selling their bandwidth
  Need for coordination of routing

exchange between providers
  Traffic from ISP A needs to get to ISP B

  Routing Arbiter project created to
facilitate this

What is an Exchange Point

  Network Access Points (NAPs)
established at end of NSFnet
  The original “exchange points”

  Major providers connect their networks
and exchange traffic

  High-speed network or ethernet switch
  Simple concept – any place where

providers come together to exchange
traffic

Conceptual Diagram of an IXP

ISP Router

ISP Router

ISP Router

Exchange Point Medium

Internet Exchange Point
Why peer?
  Consider a region with one ISP

  They provide internet connectivity to their customers
  They have one or two international connections

  Internet grows, another ISP sets up in
competition
  They provide internet connectivity to their customers
  They have one or two international connections

  How does traffic from customer of one ISP get
to customer of the other ISP?
  Via the international connections

Internet Exchange Point
Why peer?
  Yes, International Connections…

  If satellite, RTT is around 550ms per hop
  So local traffic takes over 1s round trip

  International bandwidth…
  Costs order of magnitude or two more than

domestic bandwidth
  Becomes congested with local traffic

  Wastes money, harms performance

Internet Exchange Point
Why peer?
  Multiple service providers
  Each with Internet connectivity

Why IXPs?

  Is not cost effective
  Backhaul issue causes cost to both

parties

Internet Exchange Point
Why peer?
  Solution:

  Two competing ISPs peer with each other
  Result:

  Both save money
  Local traffic stays local
  Better network performance, better QoS,…
  More international bandwidth for expensive

international traffic
  Everyone is happy

Why IXPs?

  Domestic Interconnection

Internet Exchange Point
Why peer?
  A third ISP enters the equation

  Becomes a significant player in the region
  Local and international traffic goes over

their international connections

  They agree to peer with the two other
ISPs
  To save money
  To keep local traffic local
  To improve network performance, QoS,…

Why IXPs?

  A third ISP enters the equation

Internet Exchange Point
Why peer?
  Peering means that the three ISPs have

to buy circuits between each other
  Works for three ISPs, but adding a fourth or

a fifth means this does not scale

  Solution:
  Internet Exchange Point

Internet Exchange Point

  Every participant has to buy just one
whole circuit
  From their premises to the IXP

  Rather than N-1 half circuits to connect
to the N-1 other ISPs
  5 ISPs have to buy 4 half circuits = 2 whole

circuits → already twice the cost of the IXP
connection

Internet Exchange Point
  Solution

  Every ISP participates in the IXP
  Cost is minimal – one local circuit covers all domestic

traffic
  International circuits are used for just international

traffic – and backing up domestic links in case the
IXP fails

  Result:
  Local traffic stays local
  QoS considerations for local traffic is not an issue
  RTTs are typically sub 10ms
  Customers enjoy the Internet experience
  Local Internet economy grows rapidly

Internet Exchange Point

  Ethernet switch in the middle

Why use an IXP?

  PEERING
  Shared medium vs. point-to-point
  Shared

  can exchange traffic with multiple peers at one
location via one interface

  Point-to-Point
  for high volumes of traffic

Why use an IXP?

  KEEP LOCAL TRAFFIC LOCAL!!!
  ISPs within a region peer with each other at

the local exchange
  No need to have traffic go overseas only to

come back
  Much reduced latency and increased

performance

Why use an IXP?

  SAVES MONEY!!!
  Traffic going overseas means transit

charges paid to your upstream ISP
  Money stays in local economy

  Used to provide better local infrastructure and
services for customers

  Customers pay less for Internet access
  Therefore more customers sign up
  ISP has more customers, better business

Why use an IXP?

  VASTLY IMPROVES PERFORMANCE!!!
  Network RTTs between organisations in the

local economy is measured in milliseconds,
not seconds

  Packet loss becomes virtually non-existent
  Customers use the Internet for more

products, services, and activities

Exchange Point Design

ISP 1 ISP 2 ISP 3

IXP
Management
Network

ISP 6 ISP 5 ISP 4

Ethernet Switch

IXP Services:
TLD DNS,

Routing Registry
Looking Glass,

news, etc

Exchange Point Design

ISP 1 ISP 2 ISP 3

IXP
Management
Network

ISP 6 ISP 5 ISP 4

Ethernet Switches

IXP Services:
TLD DNS,

Routing Registry
Looking Glass,

news, etc

Peering at an IXP

  Each participant needs to run BGP
  They need their own AS number

  Each participant configures external
BGP with the other participants in the
IXP
  Peering with all participants
 or

  Peering with a subset of participants

IP Address Space
  Some IXPs use private addresses for the IXP

LAN
  Public address space means the IXP network can be

leaked to the Internet, which could be undesirable
  Filtering RFC1918 address space by ISPs is Best

Practice; this avoids leakage

  Some IXPs use public addresses for the IXP
LAN
  Address space is available from the RIRs for IXPs
  IXP terms of participation usually forbid carrying the

IXP LAN addressing in the ISP backbone

Exchange Point examples

  LINX in London, UK
  Ethernet switches

  AMS-IX in Amsterdam, NL
  Ethernet switches

  SIX in Seattle, US
  Ethernet switches

  JPNAP in Tokyo, Japan
  Ethernet switches

DHCP

DHCP: Dynamic Host
Configuration Protocol
  Goal: allow host to dynamically obtain its IP

address from network server when it joins
network
  Can renew its lease on address in use
  Allows reuse of addresses (only hold address while

connected an “on”
  Support for mobile users who want to join network

(more shortly)

  DHCP overview:
  host broadcasts “DHCP discover” msg
  DHCP server responds with “DHCP offer” msg
  host requests IP address: “DHCP request” msg
  DHCP server sends address: “DHCP ack” msg

DHCP client-server scenario

223.1.1.1

223.1.1.2

223.1.1.3

223.1.1.4 223.1.2.9

223.1.2.2

223.1.2.1

223.1.3.2223.1.3.27

DHCP
server

arriving DHCP
client needs
address in this
network

223.1.3.1

time

DHCP client-server scenario

DHCP server: 223.1.2.5 arriving
 client DHCP discover

src : 0.0.0.0, 68
dest.: 255.255.255.255,67
yiaddr: 0.0.0.0
transaction ID: 654

DHCP offer
src: 223.1.2.5, 67
dest: 255.255.255.255, 68
yiaddrr: 223.1.2.4
transaction ID: 654
Lifetime: 3600 secs

DHCP request
src: 0.0.0.0, 68
dest:: 255.255.255.255, 67
yiaddrr: 223.1.2.4
transaction ID: 655
Lifetime: 3600 secs

DHCP ACK
src: 223.1.2.5, 67
dest: 255.255.255.255, 68
yiaddrr: 223.1.2.4
transaction ID: 655
Lifetime: 3600 secs

Domain Name System

(DNS)

Computers use IP addresses.
Why do we need names?
  Names are easier for people to

remember

  Computers may be moved between
networks, in which case their IP address
will change.

The old solution: HOSTS.TXT

  A centrally-maintained file, distributed
to all hosts on the Internet

SPARKY 128.4.13.9
UCB-MAILGATE 4.98.133.7
FTPHOST 200.10.194.33
... etc

  This feature still exists:
  /etc/hosts (UNIX)
  c:\windows\hosts

hosts.txt does not scale

✗ Huge file (traffic and load)
✗ Name collisions (name uniqueness)
✗ Consistency
✗ Always out of date
✗ Single point of Administration
✗ Did not scale well

The Domain Name System
was born
  DNS is a distributed database for holding

name to IP address (and other) information
  Distributed:

  Shares the Administration
  Shares the Load

  Robustness and improved performance
achieved through
  replication
  and caching

  Employs a client-server architecture
  A critical piece of the Internet's infrastructure

DNS is Hierarchical
.(root)

uk com org

DNS Database

/ (root)

etc usr bin

Unix Filesystem
Forms a tree structure

ac.uk

lboro.ac.uk

google.com ba.com unesco.org

maps.google.com

usr/local usr/sbin /etc/hosts

usr/local/src

DNS: Root name servers
  contacted by local name server that can not resolve

name
  root name server:

  contacts authoritative name server if name mapping not
known

  returns mapping to top-level name server

b USC-ISI Marina del Rey, CA
l ICANN Marina del Rey, CA

e NASA Mt View, CA
f Internet Software C. Palo Alto,
CA

i NORDUnet Stockholm k RIPE London

m WIDE Tokyo

a NSI Herndon, VA
c PSInet Herndon, VA
d U Maryland College Park, MD
g DISA Vienna, VA
h ARL Aberdeen, MD
j NSI (TBD) Herndon, VA

DNS: iterated queries
recursive query:
  puts burden of

name resolution on
contacted name
server

  heavy load?

iterated query:
  contacted server

replies with name of
server to contact

  “I don’t know this
name, but ask this
server”

requesting host
maps.google.com

maps.google.com

root name server

local name server
agate.lut.ac.uk.

1

2
3

4

5 6

authoritative name server
ns3.google.com

intermediate name server
B.GTLD-SERVERS.NET.

7

8

iterated query

 DNS is Hierarchical (contd.)

  Globally unique names
  Administered in zones (parts of the

tree)
  You can give away ("delegate") control

of part of the tree underneath you
  Example:

  google.com on one set of nameservers
  maps.google.com on a different set
  www.maps.google.com on another set

Domain Names are (almost)
unlimited
  Max 255 characters total length
  Max 63 characters in each part

  RFC 1034, RFC 1035
  If a domain name is being used as a

host name, you should abide by some
restrictions
  RFC 952 (old!)
  a-z 0-9 and minus (-) only
  No underscores (_)

Using the DNS

  A Domain Name (like www.lut.ac.uk) is
the KEY to look up information

  The result is one or more RESOURCE
RECORDS (RRs)

  There are different RRs for different
types of information

  You can ask for the specific type you
want, or ask for "any" RRs associated
with the domain name

Commonly seen Resource
Records (RRs)
  A (address): map hostname to IPv4 address
  AAAA (quad A): map a hostname to IPv6

address
  PTR (pointer): map IP address to hostname
  MX (mail exchanger): where to deliver mail

for user@domain
  CNAME (canonical name): map alternative

hostname to real hostname
  TXT (text): any descriptive text
  NS (name server), SOA (start of authority):

used for delegation and management of the
DNS itself

A Simple Example
  Query: www.lut.ac.uk.
  Query type: A
  Result:

www.lut.ac.uk. 22725 IN A 158.125.1.208

  In this case a single RR is found, but in
general, multiple RRs may be
returned.
  (IN is the "class" for INTERNET use of the

DNS)

Possible results from a Query
  POSITIVE

  one or more RRs found
  NEGATIVE

  definitely no RRs match the query
  SERVER FAIL

  cannot find the answer
  REFUSED

  not allowed to query the server

How do you use an IP address
as the key for a DNS query
  Convert the IP address to dotted-quad
  Reverse the four parts
  Add ".in-addr.arpa." to the end; special

domain reserved for this purpose
e.g. to find name for 158.125.1.208
Domain name: 208.1.125.158.in-addr.arpa.
Query Type: PTR
Result: www.lut.ac.uk.

Known as a "reverse DNS lookup" (because we are
looking up the name for an IP address, rather
than the IP address for a name)

DNS is a Client-Server
application
  (Of course - it runs across a network)
  Requests and responses are normally

sent in UDP packets, port 53
  Occasionally uses TCP, port 53

  for very large requests (larger than 512-
bytes) e.g. zone transfer from master to
slave or an IPv6 AAAA (quad A) record.

There are three roles involved
in DNS

Resolver Caching
Nameserver

Authoritative
Nameserver

Application
e.g. web
browser

Three roles in DNS
  RESOLVER

  Takes request from application, formats it into UDP
packet, sends to cache

  CACHING NAMESERVER
  Returns the answer if already known
  Otherwise searches for an authoritative server which

has the information
  Caches the result for future queries
  Also known as RECURSIVE nameserver

  AUTHORITATIVE NAMESERVER
  Contains the actual information put into the DNS by

the domain owner

Three roles in DNS

  The SAME protocol is used for resolver
<-> cache and cache <-> auth NS
communication

  It is possible to configure a single name
server as both caching and authoritative

  But it still performs only one role for
each incoming query

  Common but NOT RECOMMENDED to
configure in this way (we will see why
later).

ROLE 1: THE RESOLVER

  A piece of software which formats a
DNS request into a UDP packet, sends it
to a cache, and decodes the answer

  Usually a shared library (e.g.
libresolv.so under Unix) because so
many applications need it

  EVERY host needs a resolver - e.g.
every Windows workstation has one

How does the resolver find a
caching nameserver?
  It has to be explicitly configured

(statically, or via DHCP etc)

  Must be configured with the IP
ADDRESS of a cache (why not name?)

  Good idea to configure more than one
cache, in case the first one fails

How do you choose which
cache(s) to configure?
  Must have PERMISSION to use it

  e.g. cache at your ISP, or your own
  Prefer a nearby cache

  Minimises round-trip time and packet loss
  Can reduce traffic on your external link,

since often the cache can answer without
contacting other servers

  Prefer a reliable cache
  Perhaps your own?

Resolver can be configured
with default domain(s)
  If "foo.bar" fails, then retry query as

"foo.bar.mydomain.com"
  Can save typing but adds confusion
  May generate extra unnecessary traffic
  Usually best avoided

Example: Unix resolver
configuration
/etc/resolv.conf

domain lboro.ac.uk
nameserver 158.125.1.100
nameserver 131.231.16.7

That's all you need to configure a resolver

Testing DNS with "dig"

  "dig" is a program which just makes DNS
queries and displays the results

  Better than "nslookup", "host" because it
shows the raw information in full

dig lboro.ac.uk.
 -- defaults to query type "A"
dig lboro.ac.uk. mx
 -- specified query type
dig @8.8.8.8 lboro.ac.uk. mx
 -- send to particular cache (overrides
 /etc/resolv.conf)

The trailing dot

dig lboro.ac.uk.

  Prevents any default domain being
appended

  Get into the habit of using it always
when testing DNS
  only on domain names, not IP addresses or

e-mail addresses

dig lboro.ac.uk.

; <<>> DiG 9.6.0-APPLE-P2 <<>> lboro.ac.uk.
;; global options: +cmd
;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 26566
;; flags: qr aa rd ra; QUERY: 1, ANSWER: 1, AUTHORITY: 4, ADDITIONAL: 7

;; QUESTION SECTION:
;lboro.ac.uk. IN A

;; ANSWER SECTION:
lboro.ac.uk. 86400 IN A 158.125.1.208

;; AUTHORITY SECTION:
lboro.ac.uk. 86400 IN NS cgate.lut.ac.uk.
lboro.ac.uk. 86400 IN NS agate.lut.ac.uk.
lboro.ac.uk. 86400 IN NS bgate.lut.ac.uk.
lboro.ac.uk. 86400 IN NS ns3.ja.net.

;; ADDITIONAL SECTION:
agate.lut.ac.uk. 86400 IN A 158.125.1.100
bgate.lut.ac.uk. 86400 IN A 131.231.16.7
bgate.lut.ac.uk. 86400 IN AAAA 2001:630:301:4605::b53
cgate.lut.ac.uk. 86400 IN A 131.231.16.16
cgate.lut.ac.uk. 86400 IN AAAA 2001:630:301:2905::c53
ns3.ja.net. 21325 IN A 193.63.106.103
ns3.ja.net. 39250 IN AAAA 2001:630:0:46::67

;; Query time: 30 msec
;; SERVER: 158.125.1.100#53(158.125.1.100)
;; WHEN: Sun Dec 6 15:51:52 2009
;; MSG SIZE rcvd: 281

Understanding output from dig
  STATUS

  NOERROR: 0 or more RRs returned
  NXDOMAIN: non-existent domain
  SERVFAIL: cache could not locate answer
  REFUSED: query not available on cache server

  FLAGS
  AA: Authoritative answer (not from cache)
  You can ignore the others

  QR: Query/Response (1 = Response)
  RD: Recursion Desired
  RA: Recursion Available

  ANSWER: number of RRs in answer

Understanding output from dig
  Answer section (RRs requested)

  Each record has a Time To Live (TTL)
  Says how long the cache will keep it

  Authority section
  Which nameservers are authoritative for this domain

  Additional section
  More RRs (typically IP addresses for the authoritative

nameservers)

  Total query time
  Check which server gave the response!

  If you make a typing error, the query may go to a
default server

DNS records

DNS: distributed db storing resource records (RR)

  Type=NS
  name is domain (e.g.

foo.com)
  value is IP address of

authoritative name server
for this domain

RR format: (name, value, type,ttl)

  Type=A
  name is hostname
  value is IP address

  Type=CNAME
  name is alias name for some

“cannonical” (the real) name
  www.lboro.ac.uk is really
  www.lut.ac.uk.

  value is cannonical name

  Type=MX
  value is name of mailserver

associated with name

DNS protocol, messages

DNS protocol : query and reply messages, both with same
message format

msg header
  identification: 16 bit #

for query, reply to query
uses same #

  flags:
  query or reply
  recursion desired
  recursion available
  reply is authoritative

DNS protocol, messages

Name, type fields
 for a query

RRs in reponse
to query

records for
authoritative servers

additional “helpful”
info that may be used

HTTP

(Hypertext Transfer Protocol)

HTTP overview
HTTP: hypertext transfer

protocol
  Web’s application layer

protocol
  client/server model

  client: browser that
requests, receives,
“displays” Web objects

  server: Web server sends
objects in response to
requests

  HTTP 1.0: RFC 1945
  HTTP 1.1: RFC 2068

PC running
Explorer

Server
running

Apache Web
server

Mac running
Safari

HTTP overview (continued)
Uses TCP:
  client initiates TCP

connection (creates socket)
to server, port 80

  server accepts TCP
connection from client

  HTTP messages
(application-layer protocol
messages) exchanged
between browser (HTTP
client) and Web server
(HTTP server)

  TCP connection closed

HTTP is “stateless”
  server maintains no

information about
past client requests

Protocols that maintain
“state” are complex!

  past history (state) must
be maintained

  if server/client crashes,
their views of “state” may
be inconsistent, must be
reconciled

aside

HTTP connections

Nonpersistent HTTP
  At most one object is

sent over a TCP
connection.

  HTTP/1.0 uses
nonpersistent HTTP

Persistent HTTP
  Multiple objects can

be sent over single
TCP connection
between client and
server.

  HTTP/1.1 uses
persistent
connections in
default mode

Nonpersistent HTTP

Suppose user enters URL:
http://www.someSchool.edu/someDepartment/home.index

1a. HTTP client initiates TCP
connection to HTTP server
(process) at
www.someSchool.edu on
port 80

1b. HTTP server at host
www.someSchool.edu waiting
for TCP connection at port 80.
“accepts” connection,
notifying client

3. HTTP server receives
request message, forms
response message containing
requested object, and sends
message into its socket time

(contains text,
references to 10

jpeg images)

2. HTTP client sends HTTP
request message (containing
URL) into TCP connection
socket. Message indicates
that client wants object
someDepartment/home.index

Nonpersistent HTTP (cont.)
5. HTTP client receives

response message
containing html file, displays
html. Parsing html file, finds
10 referenced jpeg objects

6. Steps 1-5 repeated for each
of 10 jpeg objects

4. HTTP server closes TCP
connection.

time

Response time modeling
Definition of RTT: time to send

a small packet to travel
from client to server and
back.

Response time:
  one RTT to initiate TCP

connection
  one RTT for HTTP request

and first few bytes of HTTP
response to return

  file transmission time
total = 2RTT+transmit time

time to
transmit
file

initiate TCP
connection

RTT

request
file

RTT

file
received

time time

Persistent HTTP

Nonpersistent HTTP issues:
  requires 2 RTTs per object
  OS must work and allocate host

resources for each TCP
connection

  but browsers often open
parallel TCP connections to
fetch referenced objects

Persistent HTTP
  server leaves connection open

after sending response
  subsequent HTTP messages

between same client/server are
sent over connection

Persistent without
pipelining:

  client issues new request
only when previous
response has been
received

  one RTT for each
referenced object

Persistent with pipelining:
  default in HTTP/1.1
  client sends requests as

soon as it encounters a
referenced object

  as little as one RTT for all
the referenced objects

HTTP request message

  two types of HTTP messages: request, response
  HTTP request message:

  ASCII (human-readable format)

GET /somedir/page.html HTTP/1.1
Host: www.someschool.edu
User-agent: Mozilla/4.0
Connection: close
Accept-language:en

(extra carriage return, line feed)

request line
(GET, POST,

HEAD commands)

header
 lines

Carriage return,
line feed

indicates end
of message

HTTP request message:
general format

Uploading form input

Post method:
  Web page often includes

form input
  Input is uploaded to

server in entity body

URL method:
  Uses GET method
  Input is uploaded in

URL field of request
line:

www.somesite.com/animalsearch?monkeys&banana

Method types

HTTP/1.0
  GET
  POST
  HEAD

  asks server to leave
requested object out of
response

HTTP/1.1
  GET, POST, HEAD
  PUT

  uploads file in entity
body to path specified
in URL field

  DELETE
  deletes file specified

in the URL field

Conditional GET: client-side
caching

  Goal: don’t send
object if client has up-
to-date cached version

  client: specify date of
cached copy in HTTP
request
If-modified-since:

<date>

  server: response
contains no object if
cached copy is up-to-
date:
HTTP/1.0 304 Not

Modified

client server

HTTP request msg
If-modified-since:

<date>

HTTP response
HTTP/1.0

304 Not Modified

object
not

modified

HTTP request msg
If-modified-since:

<date>

HTTP response
HTTP/1.0 200 OK

<data>

object
modified

HTTP response message

HTTP/1.1 200 OK
Connection close
Date: Sun, 06 Dec 2009 12:00:15 GMT
Server: Apache/1.3.0 (Unix)
Last-Modified: Fri, 04 Dec 2009...
Content-Length: 6821
Content-Type: text/html

data data data data data ...

status line
(protocol

status code
status phrase)

header
 lines

data, e.g.,
requested
HTML file

HTTP response status codes

200 OK
  request succeeded, requested object later in this

message

301 Moved Permanently
  requested object moved, new location specified later

in this message (Location:)

400 Bad Request
  request message not understood by server

404 Not Found
  requested document not found on this server

505 HTTP Version Not Supported

In first line in server->client response message.
A few sample codes:

Trying out HTTP (client side) for yourself

1. Telnet to your favorite Web server:

Opens TCP connection to port 80
(default HTTP server port).
Anything typed in sent
to port 80 at www.lut.ac.uk.

telnet www.lboro.ac.uk 80

2. Type in a GET HTTP request:

GET /index.html HTTP/1.0 By typing this in (hit carriage
return twice), you send
this minimal (but complete)
GET request to HTTP server

3. Look at response message sent by HTTP server!

Cookies: keeping “state”
Many major Web sites use

cookies
Four components:

1) cookie header line in the HTTP
response message

2) cookie header line in HTTP
request message

3) cookie file kept on user’s host
and managed by user’s browser

4) back-end database at Web site

Example:
  Susan access Internet

always from same PC
  She visits a specific

e-commerce site for
first time

  When initial HTTP
requests arrives at
site, site creates a
unique ID and creates
an entry in backend
database for ID

Cookies: keeping “state” (cont.)

client server
usual http request msg
usual http response +
Set-cookie: 1678

usual http request msg
cookie: 1678

usual http response msg

usual http request msg
cookie: 1678

usual http response msg

cookie-
specific
action

cookie-
spectific
action

server
creates ID

1678 for user

access

Cookie file

amazon: 1678
ebay: 8734

Cookie file

ebay: 8734

Cookie file

amazon: 1678
ebay: 8734

one week later:

Cookies (continued)

What cookies can bring:
  authorization
  shopping carts
  recommendations
  user session state

(Web e-mail)

Cookies and privacy:
  cookies permit sites to

learn a lot about you
  you may supply name

and e-mail to sites
  search engines use

redirection & cookies to
learn yet more

  advertising companies
obtain info across sites

aside

User-server interaction:
authorization
Authorization: control access

to server content
  authorization credentials:

typically name, password
  stateless: client must

present authorization in
each request
  authorization: header

line in each request
  if no authorization:

header, server refuses
access, sends

WWW authenticate:
header line in

response

client server
usual http request msg

401: authorization req.
WWW authenticate:

usual http request msg
+ Authorization: <cred>

usual http response msg

usual http request msg
+ Authorization: <cred>

usual http response msg time

CDNs

(Content Distribution Networks)

Web caches (proxy server)

  user sets browser: Web
accesses via cache

  browser sends all HTTP
requests to cache
  object in cache: cache

returns object
  else cache requests

object from origin server,
then returns object to
client

Goal: satisfy client request without involving origin server

client

Proxy
server

client

origin
server

More about Web caching
  Cache acts as both client and

server
  Cache can do up-to-date check

using If-modified-since
HTTP header
  Issue: should cache take risk

and deliver cached object
without checking?

  Heuristics are used.
  Typically cache is installed by

ISP (university, company,
residential ISP)

Why Web caching?
  Reduce response time for

client request.
  Reduce traffic on an

institution’s access link.
  Internet dense with

caches enables “poor”
content providers to
effectively deliver
content

Content distribution networks
(CDNs)

  The content providers are
the CDN customers.

Content replication
  CDN company installs

hundreds of CDN servers
throughout Internet
  in lower-tier ISPs, close

to users
  CDN replicates its

customers’ content in CDN
servers. When provider
updates content, CDN
updates servers

origin server
in North America

CDN distribution node

CDN server
in S. America

CDN server
in Europe

CDN server
in Asia

CDN example

origin server
  www.foo.com
  distributes HTML
  Replaces:
 http://www.foo.com/sports.ruth.gif

 with
http://www.cdn.com/www.foo.com/sports/
ruth.gif

HTTP request for
http://www.foo.com/sports/sports.html

DNS query for www.cdn.com

HTTP request for
http://www.cdn.com/www.foo.com/sports/ruth.gif

1
2

3

Origin server

CDNs authoritative DNS server

Nearby CDN server

CDN company
  cdn.com
  distributes gif files
  uses its authoritative

DNS server to route
redirect requests

FTP

(File Transfer Protocol)

FTP: the file transfer protocol

  transfer file to/from remote host
  client/server model

  client: side that initiates transfer (either to/from remote)
  server: remote host

  ftp: RFC 959
  ftp server: port 21

file transfer
FTP

server
FTP user
interface

FTP
client

local file
system

remote file
system

user
at host

FTP: separate control, data connections
  FTP client contacts FTP

server at port 21, specifying
TCP as transport protocol

  Client obtains authorization
over control connection

  Client browses remote
directory by sending
commands over control
connection.

  When server receives a
command for a file transfer,
the server opens a TCP data
connection to client

  After transferring one file,
server closes connection.

FTP
client

FTP
server

TCP control connection
port 21

TCP data connection
port 20

  Server opens a second TCP
data connection to transfer
another file.

  Control connection: “out of
band”

  FTP server maintains
“state”: current directory,
earlier authentication

FTP commands, responses

Sample commands:
  sent as ASCII text over

control channel
  USER username
  PASS password
  LIST return list of file in

current directory
  RETR filename retrieves

(gets) file
  STOR filename stores

(puts) file onto remote
host

Sample return codes
  status code and phrase

(as in HTTP)
  331 Username OK,

password required
  125 data connection

already open; transfer
starting

  425 Can’t open data
connection

  452 Error writing file

E-Mail

(SMTP, POP, IMAP)

Electronic Mail
Three major components:
  user agents
  mail servers
  simple mail transfer protocol:

SMTP

User Agent
  a.k.a. “mail reader”
  composing, editing, reading mail

messages
  e.g., Eudora, Outlook, mutt,

Apple Mail
  outgoing, incoming messages

stored on server

user
agent

SMTP

SMTP

SMTP

user
agent

user
agent

user
agent

user
agent

user
agent

Electronic Mail

user
agent

SMTP

SMTP

SMTP

user
agent

user
agent

user
agent

user
agent

user
agent

Mail Servers
  mailbox contains incoming

messages for user
  message queue of outgoing

(to be sent) mail messages
  SMTP protocol between mail

servers to send email
messages
  client: sending mail server
  “server”: receiving mail

server

Electronic Mail: SMTP [RFC 2821]

  uses TCP to reliably transfer email message from client
to server, port 25

  direct transfer: sending server to receiving server
  three phases of transfer

  handshaking (greeting)
  transfer of messages
  closure

  command/response interaction
  commands: ASCII text
  response: status code and phrase

  messages must be in 7-bit ASCII

Scenario: Alice sends message
to Bob
1) Alice composes a message

“to” bob@someschool.edu
2) Alice’s user agent sends

message to her mail
server; message placed in
message queue

3) Client side of SMTP opens
TCP connection with Bob’s
mail server

4) SMTP client sends Alice’s
message over the TCP
connection

5) Bob’s mail server places
the message in Bob’s
mailbox

6) Bob invokes his user
agent to read message

1

2 3 4 5 6 user
agent user

agent

Sample SMTP interaction
 S: 220 hamburger.edu
 C: HELO crepes.fr
 S: 250 Hello crepes.fr, pleased to meet you
 C: MAIL FROM: <alice@crepes.fr>
 S: 250 alice@crepes.fr... Sender ok
 C: RCPT TO: <bob@hamburger.edu>
 S: 250 bob@hamburger.edu ... Recipient ok
 C: DATA
 S: 354 Enter mail, end with "." on a line by itself
 C: Do you like ketchup?
 C: How about pickles?
 C: .
 S: 250 Message accepted for delivery
 C: QUIT
 S: 221 hamburger.edu closing connection

Try SMTP interaction for
yourself:
  telnet servername 25
  see 220 reply from server
  enter HELO, MAIL FROM, RCPT TO, DATA,

QUIT commands
 above lets you send email without using email
client (reader)

SMTP: final words
  SMTP uses persistent

connections
  SMTP requires message

(header & body) to be in 7-
bit ASCII

Comparison with HTTP:
  HTTP: pull
  SMTP: push

  both have ASCII
command/response
interaction, status codes

  HTTP: each object
encapsulated in its own
response msg

  SMTP: multiple objects
sent in multipart msg

Mail message format
SMTP: protocol for

exchanging email msgs
RFC 822: standard for text

message format:
  header lines, e.g.,

  To:
  From:
  Subject:
different from SMTP

commands!
  body

  the “message”, ASCII
characters only

header

body

blank
line

Message format: multimedia
extensions
  MIME: multimedia mail extension, RFC 2045, 2056
  additional lines in msg header declare MIME content

type

From: alice@crepes.fr
To: bob@hamburger.edu
Subject: Picture of yummy crepe.
MIME-Version: 1.0
Content-Transfer-Encoding: base64
Content-Type: image/jpeg

base64 encoded data
.........................
......base64 encoded data

multimedia data
type, subtype,

param. declaration

method used
to encode data

MIME version

encoded data

MIME types
Content-Type: type/subtype; parameters
Text
  example subtypes: plain,

html

Image
  example subtypes: jpeg, gif

Audio
  example subtypes: basic (8-

bit mu-law encoded), 32kadpcm
(32 kbps coding)

Video
  example subtypes:

mpeg, quicktime

Application
  other data that must be

processed by reader
before “viewable”

  example subtypes:
msword, octet-stream

Multipart Type
From: alice@crepes.fr
To: bob@hamburger.edu
Subject: Picture of yummy crepe.
MIME-Version: 1.0
Content-Type: multipart/mixed; boundary=StartOfNextPart

--StartOfNextPart
Dear Bob, Please find a picture of a crepe.
--StartOfNextPart
Content-Transfer-Encoding: base64
Content-Type: image/jpeg
base64 encoded data
.........................
......base64 encoded data
--StartOfNextPart
Do you want the recipe?

POP3
  Short for Post Office Protocol, a protocol

used to retrieve e-mail from a mail server.
  Still most e-mail applications use the POP

protocol, although some can use the newer
IMAP (Internet Message Access Protocol).

  There are two versions of POP. The first, called
POP2, became a standard in the mid-80's and
requires SMTP to send messages. The newer
version, POP3, can be used with or without
SMTP. POP3 uses TCP/IP port 110.

POP3 protocol

authorization phase
  client commands:

  user: declare username
  pass: password

  server responses
  +OK
  -ERR

transaction phase, client:
  list: list message numbers
  retr: retrieve message by

 number
  dele: delete
  quit

 C: list
 S: 1 498
 S: 2 912
 S: .
 C: retr 1
 S: <message 1 contents>
 S: .
 C: dele 1
 C: retr 2
 S: <message 1 contents>
 S: .
 C: dele 2
 C: quit
 S: +OK POP3 server signing off

S: +OK POP3 server ready
C: user bob
S: +OK
C: pass hungry
S: +OK user successfully logged on

POP3 (more) and IMAP
More about POP3
  Previous example uses

“download and delete”
mode.

  Bob cannot re-read e-
mail if he changes client

  “Download-and-keep”:
copies of messages on
different clients

  POP3 is stateless across
sessions

IMAP
  Keep all messages in

one place: the server
  Allows user to organize

messages in folders
  IMAP keeps user state

across sessions:
  names of folders and

mappings between
message IDs and folder
name

IMAP
  IMAP is an Internet Message Access

Protocol. It is a method of accessing
electronic mail messages that are kept on a
possibly shared mail server. In other words, it
permits a "client" email program to access
remote message stores as if they were local.
For example, email stored on an IMAP server
can be manipulated from a desktop computer
at home, a workstation at the office, and a
notebook computer while travelling, without
the need to transfer messages or files back
and forth between these computers.

  IMAP uses TCP/IP port 143.

POP3 vs IMAP
  With IMAP, all your mail stays on the server in multiple

folders, some of which you have created. This enables
you to connect to any computer and see all your mail
and mail folders. In general, IMAP is great if you have a
dedicated connection to the Internet or you like to
check your mail from various locations.

  With POP3 you only have one folder, the Inbox folder.
When you open your mailbox, new mail is moved from
the host server and saved on your computer. If you
want to be able to see your old mail messages, you
have to go back to the computer where you last opened
your mail.

  With POP3 "leave mail on server" only your email
messages are on the server, but with IMAP your email
folders are also on the server.

Test POP3 and IMAP …..
  # telnet localhost 143
  Connected to staff-mail.lboro.ac.uk.
  Escape character is '^]'.
  * OK [CAPABILITY IMAP4rev1 UIDPLUS CHILDREN NAMESPACE

THREAD=ORDEREDSUBJECT
  THREAD=REFERENCES SORT QUOTA IDLE ACL ACL2=UNION STARTTLS]

Courier-IMAP ready.
  Copyright 1998-2005 Double Precision, Inc. See COPYING for distribution

information.
  a login username password
  a OK LOGIN Ok.
  a examine inbox
  * FLAGS (\Answered \Flagged \Deleted \Seen \Recent)
  * OK [PERMANENTFLAGS ()] No permanent flags permitted
  * 26 EXISTS
  * 0 RECENT
  * OK [UIDVALIDITY 989061119] Ok
  * OK [READ-ONLY] Ok
  a logout
  * BYE Courier-IMAP server shutting down
  a OK LOGOUT completed
  Connection closed by foreign host.

Exim
  Exim is an open source mail transfer agent (MTA),

which is a program responsible for receiving, routing,
and delivering e-mail messages (this type of program is
sometimes referred to as an Internet mailer, or a mail
server program). MTAs receive e-mail messages and
recipient addresses from local users and remote hosts,
perform alias creation and forwarding functions, and
deliver the messages to their destinations. Exim was
developed at the University of Cambridge for the use of
Unix systems connected over the Internet. The software
can be installed in place of sendmail, the most common
MTA for UNIX and Linux systems. In comparison to
sendmail, Exim is said to feature more straightforward
configuration and task management.

Network Address Translation

(NAT)

NAT: Network Address
Translation
  Motivation: local network uses just one IP

address as far as outside word is
concerned:
  no need to be allocated range of addresses from

ISP: just one IP address is used for all devices
  can change addresses of devices in local

network without notifying outside world
  can change ISP without changing addresses of

devices in local network
  devices inside local net not explicitly

addressable, visible by outside world (a security
plus).

Private Network
  Private IP network is an IP network that is not

directly connected to the Internet
  IP addresses in a private network can be

assigned arbitrarily.
  Not registered and not guaranteed to be globally

unique

  Generally, private networks use addresses
from the following experimental address
ranges (non-routable addresses):
  10.0.0.0 – 10.255.255.255
  172.16.0.0 – 172.31.255.255
  192.168.0.0 – 192.168.255.255

Private Addresses

NAT: Network Address
Translation

10.0.0.1

10.0.0.2

10.0.0.3

10.0.0.4

138.76.29.7

local network
(e.g., home network)

10.0.0/24

rest of
Internet

Datagrams with source or
destination in this network
have 10.0.0/24 address for

source, destination (as usual)

All datagrams leaving local
network have same single
source NAT IP address:

138.76.29.7,
different source port numbers

NAT: Network Address
Translation
Implementation: NAT router must:

  outgoing datagrams: replace (source IP address,
port #) of every outgoing datagram to (NAT IP
address, new port #)
. . . remote clients/servers will respond using (NAT

IP address, new port #) as destination addr.

  remember (in NAT translation table) every (source IP
address, port #) to (NAT IP address, new port #)
translation pair

  incoming datagrams: replace (NAT IP address, new
port #) in dest fields of every incoming datagram
with corresponding (source IP address, port #)
stored in NAT table

NAT: Network Address
Translation

10.0.0.4

10.0.0.2

10.0.0.3

S: 10.0.0.4, 3345
D: 128.119.40.186, 80

1
10.0.0.1

138.76.29.7

1: host 10.0.0.4
sends datagram to
128.119.40, 80

NAT translation table
WAN side addr LAN side addr

138.76.29.7, 5001 10.0.0.4, 3345
…… ……

S: 128.119.40.186, 80
D: 10.0.0.1, 3345 4

S: 138.76.29.7, 5001
D: 128.119.40.186, 80 2

2: NAT gw changes
datagram source
addr from 10.0.0.4,
3345 to
138.76.29.7, 5001,
updates table

S: 128.119.40.186, 80
D: 138.76.29.7, 5001 3

3: Reply arrives
 dest. address:
 138.76.29.7, 5001

4: NAT router
changes datagram
dest addr from
138.76.29.7, 5001 to 10.0.0.4, 3345

NAT: Network Address
Translation
  16-bit port-number field:

  60,000 simultaneous connections with a single LAN-
side address!

  NAT is controversial:
  violates end-to-end argument

  NAT possibility must be taken into account by app
designers, eg, P2P applications

  address shortage should instead be solved by IPv6

Simple NAT

NAT

(Private IP
addresses)

(Public IP addresses)

Main
Internet

(Public IP addresses)

Provider NATs? Considered
Harmful

ISP
NAT

(Private IP
adresses)

(Public IP addresses)

Main
Internet

ISP
network

Home
NAT

Home
network

10.0.0.12

192.168.2.12

192.168.2.99

156.148.70.32

NAT traversal: relay

NAT

Main
Internet

Local
network

NAT

Local
network

10.0.0.12
192.168.2.99

Relay S

host A

host B

1 2

TURN protocol

  Protocol for UDP/TCP relaying behind
NAT

  Data is bounced to a public TURN server
  No hole punching
  TURN works even behind symmetric

NAT

Hole punching

  Technique to allow traffic from/to a host
behind a firewall/NAT without
collaboration of the NAT itself

  UDP: simple
  TCP:

  Berkeley sockets allows TCP socket to
initiate an outgoing or listen for an incoming
connections
but not both

  Solution: bind multiple sockets to same
local endpoint

STUN (RFC 3489)

  Defines operations and message
formats to understand type of NAT

  Discovers presence and type of NAT and
firewalls between them and Internet

  Allows applications to determine their
public NAT IP address

STUNT

  Simple Traversal of UDP Through NATs
and TCP too (STUNT)

  Extends STUN to include TCP
functionality

Configuring NAT in Linux
  Linux uses the Netfilter/iptable package to add

filtering rules to the IP module

Configuring NAT with iptable
  First example:

iptables –t nat –A POSTROUTING –s 10.0.1.2
 –j SNAT --to-source 128.143.71.21

  Pooling of IP addresses:
iptables –t nat –A POSTROUTING –s 10.0.1.0/24
 –j SNAT --to-source 128.128.71.0–128.143.71.30

  ISP migration:
 iptables –t nat –R POSTROUTING –s 10.0.1.0/24
 –j SNAT --to-source 128.195.4.0–128.195.4.254

  IP masquerading:
 iptables –t nat –A POSTROUTING –s 10.0.1.0/24
 –o eth1 –j MASQUERADE

  Load balancing:
 iptables -t nat -A PREROUTING -i eth1 -j DNAT --to-
destination 10.0.1.2-10.0.1.4

Multimedia Networking

Multimedia, Quality of Service (QoS): What is it?

Multimedia applications:
Network audio and video
(“continuous media”)

Network provides
application with level of
performance needed for
application to function.

QoS

Goals

Principles
  Classify multimedia applications
  Identify the network services the apps

need
  Making the best of best effort service
Protocols and architectures
  Specific protocols for best-effort
  Architectures for QoS

MM networking applications
Fundamental

characteristics:
  Typically delay

sensitive
  End-to-end delay
  Delay jitter

  But loss tolerant:
infrequent losses
cause minor glitches

  Antithesis of data,
which are loss
intolerant but delay
tolerant.

Classes of MM applications:
1) Streaming stored audio

 and video
2) Streaming live audio

 and video
3) Real-time interactive

 audio and video

Jitter is the variability
of packet delays within
the same packet stream

Streaming stored multimedia

  Streaming:
  Media stored at source
  Transmitted to client

  Streaming: client playout begins before all
data has arrived

  Timing constraint for still-to-be transmitted
data: in time for playout

Streaming stored multimedia:
What is it?

1. video
recorded

2. video
sent

3. video received,
played out at client

C
um

ul
at

iv
e

da
ta

Streaming: at this time, client
playing out early part of video,
while server still sending later
part of video

network
delay

time

Streaming live multimedia
Examples:
  Internet radio talk show
  Live sporting event
Streaming
  Playback buffer
  Playback can lag tens of seconds after

transmission
  Still have timing constraint
Interactivity
  Fast forward impossible
  Rewind, pause possible!

Interactive, real-time
multimedia

  End-end delay requirements:
  Audio: < 150 msec good, < 400 msec OK

  Includes application-level (packetization) and network
delays

  Higher delays noticeable, impair interactivity

  Session initialization
  How does callee advertise its IP address, port

number, encoding algorithms?

  Applications: IP telephony,
video conference, distributed
interactive worlds

A few words about audio
compression

  Analog signal sampled
at constant rate
  Telephone: 8,000

samples/sec
  CD music: 44,100

samples/sec

  Each sample quantized,
i.e., rounded
  E.g., 28=256 possible

quantized values

  Each quantized value
represented by bits
  8 bits for 256 values

  Example: 8,000
samples/sec, 256
quantized values -->
64,000 bps

  Receiver converts it
back to analog signal:
  Some quality reduction

Example rates
  CD: 1.411 Mbps
  MP3: 96, 128, 160 kbps
  Internet telephony:

5.3 - 13 kbps

 constant bit
 rate video
transmission

C
um

ul
at

iv
e

da
ta

time

variable
network

delay

client video
reception

 constant bit
 rate video
 playout at client

client
playout
delay

bu
ff

er
ed

vi

de
o

Streaming multimedia: Client
buffering

  Client-side buffering, playout delay
compensate for network-added delay,
delay jitter

Packet loss and delay
  Network loss: IP datagram lost due to network

congestion (router buffer overflow)
  Delay loss: IP datagram arrives too late for

playout at receiver
  Delays: processing, queuing in network; end-system

(sender, receiver) delays
  Typical maximum tolerable delay: 400 ms

  Loss tolerance: depending on voice encoding,
losses concealed, packet loss rates between
1% and 10% can be tolerated.

Multimedia over today’s Internet
TCP/UDP/IP: “best-effort service” no “QoS”
  No guarantees on delay, loss

Today’s Internet multimedia applications
use application-level techniques to mitigate

(as best possible) effects of delay, loss

But you said multimedia apps requires
QoS and level of performance to be

effective!

? ? ? ?
?

?

? ?
?

?

?

How should the Internet evolve
to better support multimedia?
Integrated services philosophy:
  Fundamental changes in

Internet so that apps can
reserve end-to-end
resources
including bandwidth

  Requires new, complex
software in hosts & routers

Laissez-faire:
  No major changes
  More bandwidth when

needed
  Content distribution,

application-layer multicast
  Application layer

Differentiated services
philosophy:

  Fewer changes to Internet
infrastructure, yet provide
1st and 2nd class service

Improving QOS in IP Networks
Thus far: “making the best of best effort”
Future: next generation Internet with QoS

guarantees
  RSVP: signaling for resource reservations
  Differentiated Services: differential guarantees
  Integrated Services:

firm guarantees

  simple model
for sharing and
congestion
studies:

Principles for QOS Guarantees
  Example: 1Mbps IP phones and FTP/p2p

share 1.5 Mbps link.
  bursts of FTP can congest router, cause audio

loss
  want to give

priority to
audio over
FTP

packet marking needed for router to
distinguish between different classes; and
new router policy to treat packets accordingly

Principle 1

Principles for QOS Guarantees
  what if applications misbehave (audio sends higher than

declared rate)
  policing: force source adherence to bandwidth allocations

  marking and policing at network edge:

  similar to ATM UNI (User Network Interface)

provide protection (isolation) for one class from others
Principle 2

Principles for QOS Guarantees
  Allocating fixed (non-sharable)

bandwidth to flow: inefficient use of
bandwidth if flows doesn’t use its
allocation

While providing isolation, it is desirable to
use resources as efficiently as possible

Principle 3

Principles for QOS Guarantees

  Basic fact of life: can not support traffic
demands beyond link capacity

Call Admission: flow declares its needs, network may
block call (e.g., busy signal) if it cannot meet needs

Principle 4

Summary of QoS Principles

Scheduling And Policing
Mechanisms
  scheduling: choose next packet to send on

link
  FIFO (first in first out) scheduling: send in

order of arrival to queue
  discard policy: if packet arrives to full queue:

who to discard?
  Tail drop: drop arriving packet
  priority: drop/remove on priority basis
  random: drop/remove randomly

Scheduling Policies: more
Priority scheduling: transmit highest

priority queued packet
  multiple classes, with different priorities

  class may depend on marking or other
header info, e.g. IP source/dest, port
numbers, etc..

Scheduling Policies: still more

round robin scheduling:
  multiple classes
  cyclically scan class queues, serving one

from each class (if available)

Scheduling Policies: still more

Weighted Fair Queuing:
  generalized Round Robin
  each class gets weighted amount of

service in each cycle

IETF Differentiated Services

Diffserv approach:
  simple functions in network core,

relatively complex functions at edge
routers (or hosts)

  Do’t define define service classes,
provide functional components to build
service classes

Edge router:
  per-flow traffic

management
  marks packets as in-profile

and out-profile

Core router:
  per class traffic management
  buffering and scheduling

based on marking at edge
  preference given to in-profile

packets
  Assured Forwarding

Diffserv Architecture scheduling

. . .

marking

  class-based marking: packets of different classes marked
differently

  intra-class marking: conforming portion of flow marked
differently than non-conforming one

  profile: pre-negotiated rate A, bucket size B
  packet marking at edge based on per-flow profile

Possible usage of marking:

User packets

Rate A

B

Edge router pckt marking

Classification and Conditioning

  Packet is marked in the Type of Service
(TOS) in IPv4, and Traffic Class in IPv6

  6 bits used for Differentiated Service
Code Point (DSCP) and determine PHB
that the packet will receive

  2 bits are currently unused

Classification and Conditioning

may be desirable to limit traffic injection
rate of some class:

  user declares traffic profile (e.g., rate,
burst size)

  traffic metered, shaped if non-
conforming

Firewalls

156

Firewalls

isolates organization’s internal net from larger Internet,
allowing some packets to pass, blocking others.

firewall

Internet privately administered

222.22/16

By conventional definition, a firewall is a partition made
of fireproof material designed to prevent the spread
of fire from one part of a building to another.

Firewall goals

  All traffic from outside to inside and
vice-versa passes through the firewall.

  Only authorized traffic, as defined by
local security policy, will be allowed to
pass.

  The firewall itself is immune to
penetration.

Firewalls: taxonomy
1.  Traditional packet

filters
  filters often combined

with router, creating
a firewall

2.  Stateful filters
3.  Application

gateways

Major firewall vendors:
Checkpoint
Cisco PIX

Traditional packet filters

  source IP address
  destination IP

address
  source port
  destination port
  TCP flag bits

  SYN bit set: datagram
for connection
initiation

  ACK bit set: part of
established
connection

  TCP or UDP or ICMP
  Firewalls often

configured to block all
UDP

  direction
  Is the datagram

leaving or entering
the internal network?

  router interface
  decisions can be

different for different
interfaces

Analyzes each datagram going through it; makes
drop decision based on:

Filtering Rules - Examples

Policy Firewall Setting
No outside Web access. Drop all outgoing packets to

any IP address, port 80
Outside connections to
public Web server only.

Drop all incoming TCP SYN
packets to any IP except
130.207.244.203, port 80

Prevent Web-radios from
eating up the available
bandwidth.

Drop all incoming UDP packets
- except DNS and router
broadcasts.

Prevent your network
from being used for a
Smuft DoS attack.

Drop all ICMP packets going
to a “broadcast” address (eg
130.207.255.255).

Prevent your network
from being tracerouted

Drop all incoming ICMP

Access control lists

action
source

address
dest

address
protocol

source
port

dest
port

flag
bit

allow 222.22/16
outside of
222.22/16 TCP > 1023 80

any

allow outside of
222.22/16

222.22/16
TCP 80 > 1023 ACK

allow 222.22/16
outside of
222.22/16 UDP > 1023 53 ---

allow outside of
222.22/16

222.22/16
UDP 53 > 1023 ----

deny all all all all all all

Apply rules from top to bottom:

Access control lists

  Each router/firewall interface can have
its own ACL

  Most firewall vendors provide both
command-line and graphical
configuration interface

Advantages and disadvantages of
traditional packet filters
  Advantages

  One screening router can protect entire network
  Can be efficient if filtering rules are kept simple
  Widely available. Almost any router, even Linux

boxes

  Disadvantages
  Can be penetrated
  Cannot enforce some policies. For example, permit

certain users.
  Rules can get complicated and difficult to test

Firewall Lab: iptables
  Converts linux box into a packet filter.
  Part of most linux distributions today.

linux
host

linux
host w/
iptables

student
network

your job:
configure

Firewall lab: iptables

  iptables
  Provides firewall capability to a linux host
  Comes installed with linux Fedora
  With other versions of Linux, may need to

install RPM

Chain types

linux
host w/
iptables

protected
network

Internet

linux
host w/
iptables

protected
network

Internet

linux
host w/
iptables

protected
network

Internet

INPUT
chain

OUTPUT
chain

FORWARD
chain

iptables: Example command
iptables –A INPUT –i eth0 –s 232.16.4.0/24 –j ACCEPT

  Sets a rule
  Accepts packets that enter from interface eth0

and have source address in 232.16.4/24
  Kernel applies the rules in order.

  The first rule that matches packet determines
the action for that packet

  Append: -A
  Adds rule to bottom of list of existing rules

iptables: More examples
iptables –L

  list current rules
iptables –F

  flush all rules
iptables – D INPUT 2

  deletes 2nd rule in INPUT chain
iptables –I INPUT 1 –p tcp –tcp-flags SYN –s

232.16.4.0/24 –d 0/0:22 –j ACCEPT
  -I INPUT 1, put rule at top
  Accept TCP SYNs to port 22 (ssh) from

232.16.4.0/24

iptables Options

-p protocol type (tcp, udp, icmp)

-s source IP address & port number
-d dest IP address & port number
-i interface name (lo, ppp0, eth0)

-j target (ACCEPT, DENY)
-l log this packet
--sport source port

--dport dest port
--icmp-type

Firewall Lab: Part A
  Rules for outgoing traffic:

  Your local machine should be able to communicate
with the student network without any restrictions.

  Rules for incoming traffic:
  All incoming connection requests should be rejected,

with the following exception:
  Your machine should respond to Ping from network

10.0.0/24
  Your machine should accept all incoming SSH, HTTP,

FTP requests from Network 10.0/16
  Your machine should accept all incoming telnet

connections from the machine 10.0.0.1 and
10.0.0.110.

  All multicast traffic should be allowed
  OSPF traffic should be allowed

Firewall Lab: Part B
  Rules for outgoing traffic from internal node:

  Outgoing SSH, and ICMP traffic should be allowed
  All multicast traffic should be allowed
  OSPF traffic should be allowed
  All other traffic should be blocked

  Rules for incoming traffic to protected server:
  All incoming SSH, http, SMTP, Ping, and anonymous

ftp should be permitted
  All multicast traffic should be allowed
  OSPF traffic should be allowed
  All other incoming traffic should be blocked

Stateful Filters

  In previous example, any packet with
ACK=1 and source port 80 gets in.
  Attacker could, for example, attempt a

malformed packet attack by sending ACK=1
segments

  Stateful filter: Adds more intelligence to
the filter decision-making process
  Stateful = remember past packets
  Memory implemented in a very dynamic

state table

Stateful filters: example

source
address

dest
address

source
port

dest
port

222.22.1.7 37.96.87.123 12699 80

222.22.93.2
199.1.205.23 37654 80

222.22.65.143 203.77.240.43 48712 80

If rule table indicates that stateful table must be checked:
check to see if there is already a connection in stateful table

  Log each TCP connection initiated through firewall: SYN segment
  Timeout entries which see no activity for, say, 60 seconds

Stateful filters can also remember outgoing UDP segments

Stateful example

action
source

address
dest

address
proto

source
port

dest
port

flag
bit

check
conxion

allow 222.22/16
outside of
222.22/16

TCP > 1023 80
any

allow outside of
222.22/16

222.22/16
TCP 80 > 1023 ACK x

allow 222.22/16
outside of
222.22/16

UDP > 1023 53 ---

allow outside of
222.22/16

222.22/16
UDP 53 > 1023 ---- x

deny all all all all all all

1)  Packet arrives from outside: SA=37.96.87.123, SP=80,
DA=222.22.1.7, DP=12699, SYN=0, ACK=1

2)  Check filter table ➜ check stateful table

3) Connection is listed in connection table ➜ let packet through

Demarcation Zone (DMZ)

Web
server

FTP
server

DNS
server

application
gateway

Internet

Demilitarized zone

Internal
network

firewall

