Network Management & Monitoring Overview

Advanced ccTLD Workshop

September, 2008 Amsterdam, Holland

What is network management?

- System & Service monitoring
 - Reachability, availability
- Resource measurement/monitoring
 - Capacity planning, availability
- Performance monitoring (RTT, throughput)
- Statistics & Accounting/Metering
- Fault Management (Intrusion Detection)
 - Fault detection, troubleshooting, and tracking
 - Ticketing systems, help desk
- Change management & configuration monitoring

Big picture - First View

How it all fits together **Notifications** - Monitoring - Data collection - Accounting Ticket - Change control - Capacity planning & monitoring - Availability (SLAs) - NOC Tools - Trends - Ticket system Detect problems Ticket Ticket - Improvements Ticket - Upgrades - User complaints - Requests Ticket **Fix problems**

Why network management?

- Make sure the network is up and running. Need to monitor it.
 - Deliver projected SLAs (Service Level Agreements)
 - Depends on policy
 - What does your administration/government expect?
 - What do your customers expect?
 - What does the rest of the Internet expect?
 - Is 24x7 good enough?
 - There's no such thing as 100% uptime for a server
 - Can we get 100% uptime for DNS? What are people's experience?

Why network management ? -3

- What does it take to deliver 99.9 % uptime?
 - 30,5 x 24 = 762 hours a month
 - (762 (762 x .999)) x 60 = 45 minutes maximum of downtime a month!
- Need to shutdown 1 hour / week?
 - (762 4) / 762 x 100 = 99.4 %
 - Remember to take planned maintenance into account in your calculations, and inform your users/customers if they are included/excluded in the SLA
- How is availability measured?
 - In the core? End-to-end? From the Internet?

Documentation: Diagramming Software

Windows Diagramming Software

• Visio:

http://office.microsoft.com/en-us/visio/FX100487861033.aspx

• Ezdraw:

http://www.edrawsoft.com/

Open Source Diagramming Software

• Dia:

http://live.gnome.org/Dia

Cisco reference icons

http://www.cisco.com/web/about/ac50/ac47/2.html

 Nagios Exchange: http://www.nagiosexchange.org/

- Three kinds of tools (imho)
 - Diagnostic tools used to test connectivity, ascertain that a location is reachable, or a device is up – usually active tools
 - Monitoring tools tools running in the background ("daemons" or services), which collect events, but can also initiate their own probes (using diagnostic tools), and recording the output, in a scheduled fashion.
 - Performance tools tell us how our network is handling traffic flow and how much flow (traffic) there is.

Performance Tools

- Key is to look at each router interface (probably don't need to look at switch ports).
- Some common tools:
 - http://cricket.sourceforge.net/
 - http://www.mrtg.com/
 - http://nfsen.sourceforge.net/

- Active tools
 - Ping test connectivity to a host
 - Traceroute show path to a host
 - MTR combination of ping + traceroute
 - SNMP collectors (polling)
- Passive tools
 - log monitoring, SNMP trap receivers, NetFlow
- Automated tools
 - SmokePing record and graph latency to a set of hosts, using ICMP (Ping) or other protocols
 - MRTG/RRD record and graph bandwidth usage on a switch port or network link, at regular intervals

- Network & Service Monitoring tools
 - Nagios server and service monitor
 - Can monitor pretty much anything
 - → HTTP, SMTP, DNS, Disk space, CPU usage, ...
 - Easy to write new plugins (extensions)
 - Basic scripting skills are required to develop simple monitoring jobs – Perl, Shellscript...
 - Many good Open Source tools
 - Zabbix, ZenOSS, Hyperic, ...
- Use them to monitor reachability and latency in your network
 - Parent-child dependency mechanisms are very useful!

- Monitor your critical Network Services
 - DNS
 - Radius/LDAP/SQL
 - SSH to routers
- How will you be notified?
- Don't forget log collection!
 - Every network device (and UNIX and Windows servers as well) can report system events using syslog
 - You **MUST** collect and monitor your logs!
 - Not doing so is one of the most common mistakes when doing network monitoring

Network Management Protocols

- SNMP Simple Network Management Protocol
 - Industry standard, hundreds of tools exist to exploit it
 - Present on any decent network equipment
 - Network throughput, errors, CPU load, temperature, ...
 - UNIX and Windows implement this as well
 - → Disk space, running processes, ...
- SSH and telnet
 - It's also possible to use scripting to automate monitoring of hosts and services

Fault & problem management

- Is the problem transient?
 - Overload, temporary resource shortage
- Is the problem permanent?
 - Equipment failure, link down
- How do you detect an error?
 - Monitoring!
 - Customer complaints
- A ticket system is essential
 - Open ticket to track an event (planned or failure)
 - Define dispatch/escalation rules
 - Who handles the problem?
 - Who gets it next if no one is available?

Ticketing systems

- Why are they important ?
 - Track all events, failures and issues
- Focal point for helpdesk communication
- Use it to track all communications
 Both internal and external
- Events originating from the outside:
 - customer complaints
- Events originating from the inside:
 - System outages (direct or indirect)
 - Planned maintenance / upgrade Remember to notify your customers!

Ticketing systems - 2

- Use ticket system to follow each case, including internal communication between technicians
- Each case is assigned a case number
- Each case goes through a similar life cycle:
 - New
 - Open
 - ..
 - Resolved
 - Closed

Ticketing systems - 3

• Workflow:

Ticketing systems - 4

Some ticketing software systems:

rt

- heavily used worldwide.
- A classic ticketing system that can be customized to your location.
- Somewhat difficult to install and configure.
- Handles large-scale operations.

trac

- A hybrid system that includes a wiki and project management features.
- Ticketing system is not as robust as rt, but works well.
- Often used for "trac"king group projects.

Configuration management & monitoring

- Record changes to equipment configuration, using *revision control* (also for configuration files)
- Inventory management (equipment, IPs, interfaces, etc.)
- Use versioning control
 - As simple as:

"cp named.conf named.conf.20070827-01"

- For plain configuration files:
 - CVS, Subversion
 - Mercurial

Configuration management & monitoring - 2

- Traditionally, used for source code (programs)
- Works well for any text-based configuration files
 Also for binary files, but less easy to see differences
- For network equipment:
 - RANCID (Automatic Cisco configuration retrieval and archiving, also for other equipment types)

Big picture - Again

• How it all fits together

Summary of Some Open Source Solutions

Performance

- Cricket
- IFPFM
- flowc
- mrtg
- dsc
- dnsmon
- netflow
- NfSen
- ntop
- pmacct
- rrdtool
- SmokePing

SNMP/Perl/ping Net Management

- Big Brother
- Big Sister
- Cacti
- Hyperic
- Munin
- Nagios
- Netdisco
- OpenNMS
- Sysmon
- Zabbix
- ZenOSS

Change Mgmt

- Mercurial
- Rancid (routers)
- RCS
- Subversion
- **Security/NIDS**
- Nessus
- SNORT
- ACID (base/lab)
- Ticketing
- rt
- trac

