Análisis de Rendimiento

Carlos Vicente Servicios de Red Universidad de Oregon

Contenido

- Planificación de la gestión del rendimiento
- Métricas
 - Red
 - Sistemas
 - Servicios
- Ejemplos de mediciones

Planificación

- ¿Cuál es el propósito?
 - Baselining, Troubleshooting, crecimiento
 - Defenderse de acusaciones
- ¿A quién va dirigida la información?
 - Administración, NOC, clientes
 - Cómo estructurar la información y presentarla
- Alcance: ¿Puedo medir todo?
 - Impacto en los dispositivos (medidos y de medición)
 - Balance entre cantidad de información y tiempo en encontrarla

Métricas

- Métricas de rendimiento de red
 - Capacidad del canal nominal y efectiva
 - Utilización del canal
 - Retardo y *jitter*
 - Pérdida de paquetes y errores
- Métricas de rendimiento de sistemas
 - Disponibilidad
 - Memoria, Utilización CPU, load (carga), iowait, etc.
- Métricas de rendimiento de servicios

Métricas de rendimiento de red más comunes

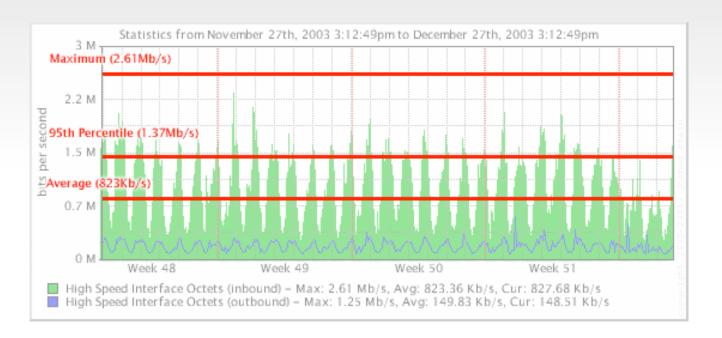
- Relativas al tráfico:
 - Bits por segundo
 - Paquetes por segundo
 - Paquetes *unicast* vs. paquetes *no-unicast*
 - Errores
 - Paquetes descartados
 - Flujos por segundo
 - Tiempo de ida y vuelta (RTT)
 - Dispersión del retardo (Jitter)

Capacidad Nominal del Canal

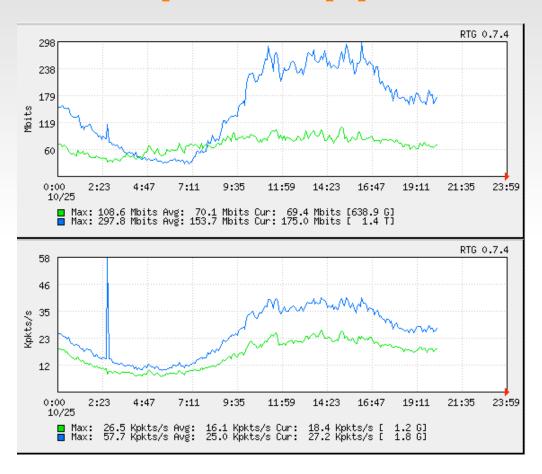
- La máxima cantidad de bits que se pueden transmitir por unidad de tiempo (ej. bits por segundo)
- Depende de:
 - Ancho de banda del medio físico
 - Cable
 - Ondas electromagnéticas
 - Capacidad de procesamiento de los elementos transmisores
 - Eficiencia de los algoritmos de acceso al medio
 - Codificación de canal y compresión

Capacidad efectiva del canal

- Siempre es una fracción de la capacidad nominal
- Depende de:
 - La carga adicional (overhead) de los protocolos en las varias capas
 - Limitaciones en los dispositivos extremos
 - Eficiencia de los algoritmos de control de flujo, etc
 - Por ej. TCP

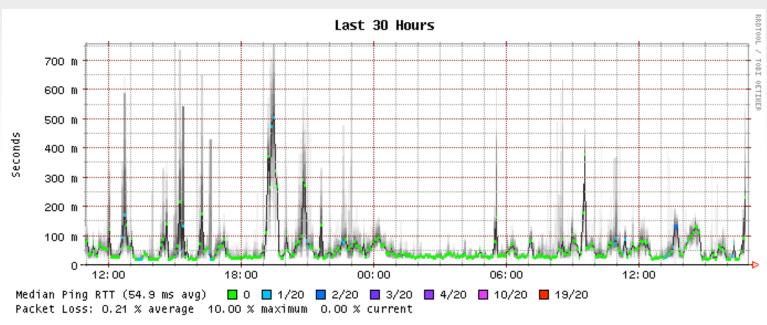

Utilización del canal

- Qué <u>fracción de la capacidad</u> nominal de un canal está siendo realmente utilizada
- Importante!
 - Planificación futura:
 - ¿Qué tasa de crecimiento tiene mi utilización?
 - ¿Para cuándo debo planear comprar más capacidad?
 - ¿Dónde debo invertir en actualizaciones?
 - Resolución de problemas:
 - Dónde están mis cuellos de botella, etc.


Percentil 95

- El valor más pequeño que es mayor que el 95% de los valores en una muestra
- Significa que el 95% del tiempo, la utilización del canal es igual o menor que este valor
 - O sea, se descartan los picos
- Por qué es importante en las redes de datos?
 - Da una idea de la utilización regular, sostenida del canal
 - Los ISPs la utilizan para facturación de enlaces grandes

Percentil 95


bps vs. pps

Retardo extremo-a-extremo

- El tiempo transcurrido en transmitir un paquete durante su <u>trayecto</u> <u>completo</u>
 - Producido por una aplicación, entregado al sistema operativo, pasado a una tarjeta de red, codificado, transmitido por un medio físico (cobre, fibra, aire), recibido por un equipo intermedio (switch, router), analizado, retransmitido en otro medio...etc.
 - La medición más común es de ida y vuelta (round-trip-time, o RTT) Programa *ping*.

Medición histórica de Retardo

Probe: 20 ICMP Echo Pings (56 Bytes) every 300 seconds created on Tue Oct 21 16:56:23 2008

Tipos de Retardo

- Componentes del retardo extremo a extremo:
 - Retardo de Procesamiento
 - Retardo de Colas
 - Retardo de Transmisión
 - Retardo de Propagación

Retardo de Procesamiento

- Tiempo requerido en analizar el encabezado y decidir a dónde enviar el paquete (ej. decisión de enrutamiento)
 - En un enrutador, dependerá del número de entradas en la tabla de rutas, la implementación (estructuras de datos), el hardware, etc.
- Puede incluir la verificación de errores

Retardo de Colas

- Tiempo en que el paquete espera en un *búfer* hasta ser transmitido
- El número de paquetes esperando en cola dependerá de la intensidad y la naturaleza del tráfico
- Los algoritmos de colas en los enrutadores intentan adaptar estos retardos a ciertas preferencias, o imponer un uso equitativo

Retardo de Transmisión

- El tiempo requerido para *empujar* todos los bits de un paquete a través del medio de transmisión
- Para R=Tasa de bits, L=Longitud del paquete, d = delay o retardo:

$$d = L/R$$

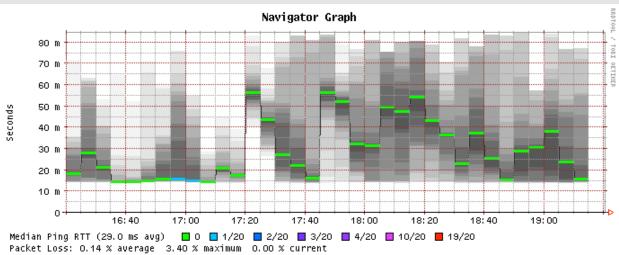
• Por ejemplo, para transmitir 1024 bits utilizando Fast Ethernet (100 Mbps):

d = 1024/1x10e8 = 10.24 micro segundos

Retardo de Propagación

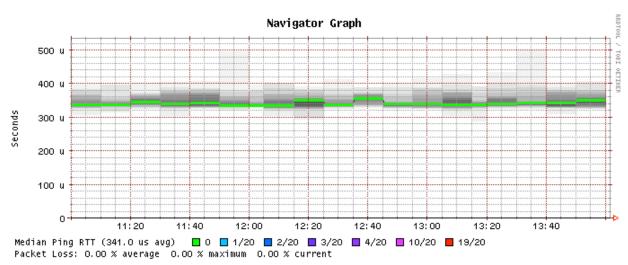
- Una vez que el bit es 'empujado' en el medio, el tiempo transcurrido en su propagación hasta el final del <u>trayecto físico</u>
- La velocidad de propagación del enlace depende más que nada de la distancia medio físico
 - Cercano a la velocidad de la luz en la mayoría de los casos
- Para d = distancia, s = velocidad de propagación

$$Dp = d/s$$


Transmisión vs. Propagación

- Puede ser confuso al principio
- Considerar un ejemplo:
 - Dos enlaces de 100 Mbps.
 - Fibra óptica de 1 Km
 - Via Satélite, con una distancia de 30Km entre base y satélite
 - Para dos paquetes del mismo tamaño, cuál tiene mayor retardo de transmisión? Y propagación?

Pérdida de paquetes


- Ocurren por el hecho de que las colas (búfers) no son infinitas
 - Cuando un paquete llega a una cola y ésta está llena, el paquete se descarta.
 - La pérdida de paquetes, si ha de ser corregida, se resuelve en capas superiores (transporte o aplicación)
 - La corrección de pérdidas, usando retransmisión, puede causar aún más congestión si no se ejerce algún tipo de control

Jitter

Probe: 20 ICMP Echo Pings (56 Bytes) every 300 seconds

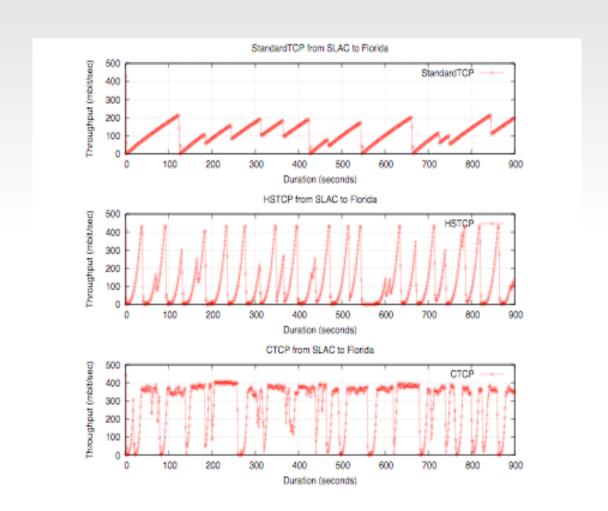
created on Wed Jul 19 19:20:26 2006

Probe: 20 SSH connections every 300 seconds

created on Wed Oct 22 14:01:25 2008

Control de Flujo y Congestión

- Limitar la tasa de envío porque el receptor no puede procesar los paquetes a la misma velocidad que los recibe
- Limitar la tasa de envío del emisor porque existen pérdidas y retardos en el trayecto


Controles en TCP

- IP implementa un servicio no-orientado a conexión
 - No existe ningún mecanismo en IP que ataque las causas de la pérdida de paquetes
- TCP implementa control de flujo y congestión
 - En los extremos, porque los nodos intermedios en la capa de red no hablan TCP

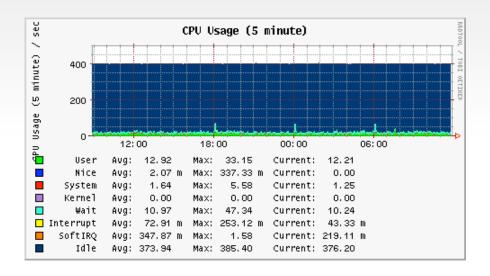
Flujo vs. Congestión en TCP

- Flujo: controlado por los tamaños de ventana (RcvWindow) enviados por el receptor
- Congestión: controlado por el valor de ventana de congestión (CongWin)
 - Mantenido independientemente por el emisor
 - Varía de acuerdo a la detección de paquetes perdidos
 - Timeout o la recepción de tres ACKs repetidos
 - Comportamientos:
 - Incremento aditivo / Decremento multiplicativo (AIMD)
 - Comienzo lento (Slow Start)
 - Reacción a eventos de timeout

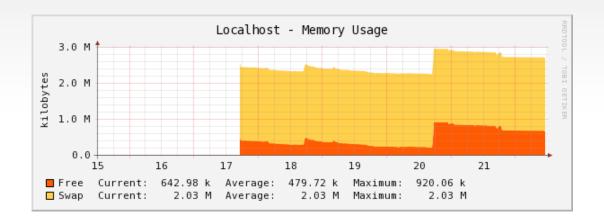
Diferentes algoritmos de Control de Congestión en TCP

Métricas para sistemas

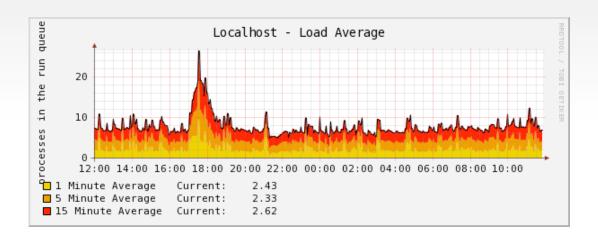
- Disponibilidad
- En sistemas Unix/Linux:
 - Uso del CPU
 - Kernel, System, User, IOwait
 - Uso de la Memoria
 - Real y Virtual
 - Carga (load)


Disponibilidad

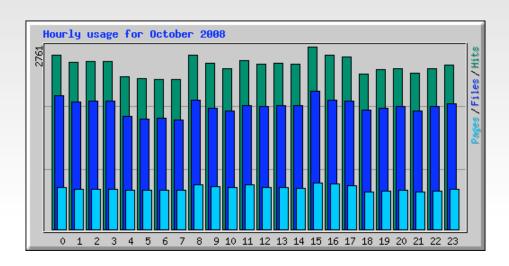
State	Type / Reason	Time	% Total Time	% Known Time
UP	Unscheduled	363d 15h 35m 6s	99.995%	99.995%
	Scheduled	1d 8h 0m 45s	0.365%	0.365%
	Total	364d 23h 35m 51s	99.995%	99.995%
DOWN	Unscheduled	Od Oh Om Os	0.000%	0.000%
	Scheduled	Od Oh Om Os	0.000%	0.000%
	Total	Od Oh Om Os	0.000%	0.000%
UNREACHABLE	Unscheduled	0d 0h 23m 36s	0.005%	0.005%
	Scheduled	Od Oh Om 33s	0.000%	0.000%
	Total	0d 0h 24m 9s	0.005%	0.005%
Undetermined	Nagios Not Running	Od Oh Om Os	0.000%	
	Insufficient Data	Od Oh Om Os	0.000%	
	Total	Od Oh Om Os	0.000%	
All	Total	365d Oh Om Os	100.000%	100.000%

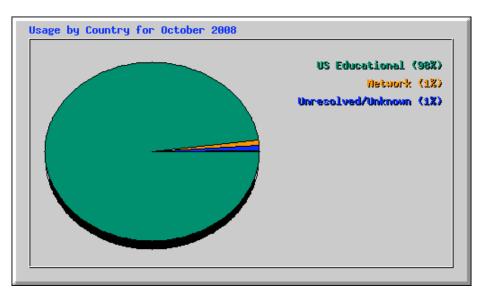

State Breakdowns For Host Services:

Service	% Time OK	% Time Warning	% Time Unknown	% Time Critical	% Time Undetermined
HTTP	99.999% (99.999%)	0.000% (0.000%)	0.000% (0.000%)	0.001% (0.001%)	0.000%
<u>HTTPS</u>	99.974% (99.974%)	0.000% (0.000%)	0.000% (0.000%)	0.026% (0.026%)	0.000%
<u>PING</u>	0.000% (0.000%)	0.000% (0.000%)	0.000% (0.000%)	0.000% (0.000%)	100.000%
POP3	99.926% (99.926%)	0.000% (0.000%)	0.000% (0.000%)	0.074% (0.074%)	0.000%
<u>SMTP</u>	99.998% (99.998%)	0.000% (0.000%)	0.000% (0.000%)	0.002% (0.002%)	0.000%
TRAP	25.865% (25.865%)	0.000% (0.000%)	0.000% (0.000%)	74.135% (74.135%)	0.000%
Average	70.960% (70.960%)	0.000% (0.000%)	0.000% (0.000%)	12.373% (12.373%)	16.667%

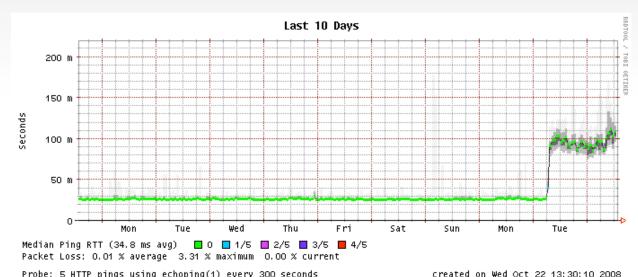

Uso del CPU

Memoria

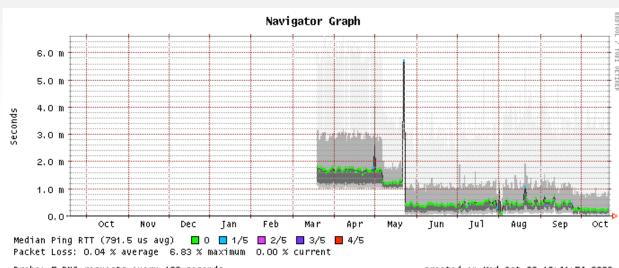

Carga (load)



Métricas de Servicios


- La clave está en elegir las métricas más importantes para cada servicio
 - Preguntarse:
 - Cómo se percibe la degradación del servicio?
 - Tiempo de espera?
 - Disponibilidad?
 - Cómo justifico mantener el servicio?
 - Quién lo está utilizando?
 - Con qué frecuencia?
 - Valor económico?

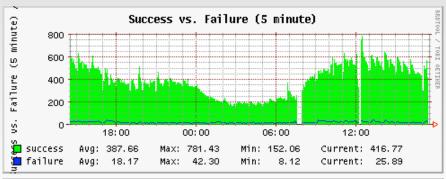
Utilización de servidor web

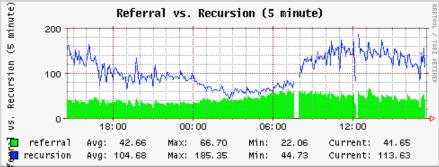


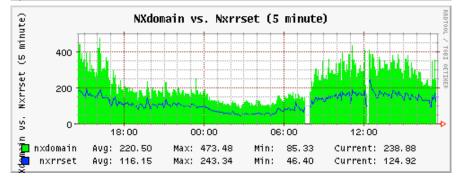
Tiempo de respuesta (servidor web)

Probe: 5 HTTP pings using echoping(1) every 300 seconds

Tiempo de Respuesta (servidor DNS)

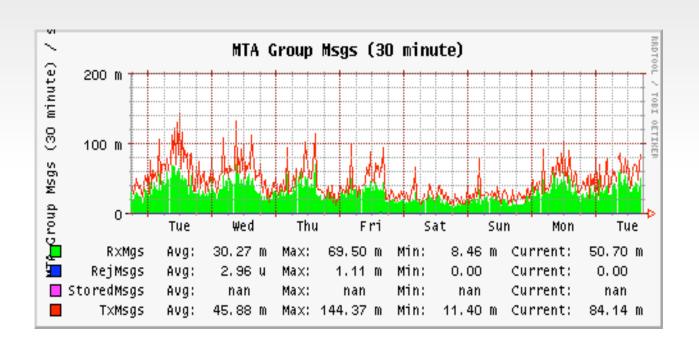

Probe: 5 DNS requests every 180 seconds


created on Wed Oct 22 13:41:54 2008


Métricas de DNS

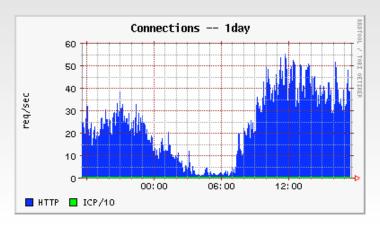
Estadística	Descripción		
Success	Número de peticiones con éxito (respuesta no es una referencia)		
Referral	Número de peticiones que resultaron en una referencia		
NXRRSET	Número de peticiones cuyo nombre no contenía el tipo de record consultado		
NXDOMAIN	Número de peticiones cuyo nombre no existía		
Recursion	Número de peticiones recursivas que requirieron el envío de una o más peticiones por el servidor		
Failure	Número de peticiones sin éxito que resultaron en un fallo diferente a NXDOMAIN		
Total	Número de peticiones totales (por unidad de tiempo)		

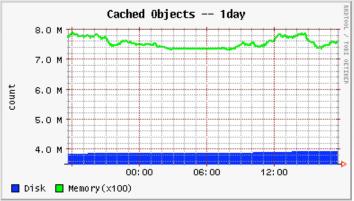
Métricas de DNS

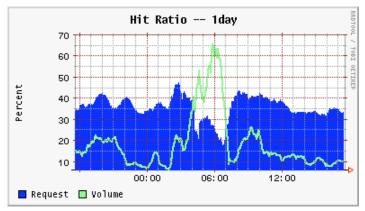


Métricas de Servidor de Correo

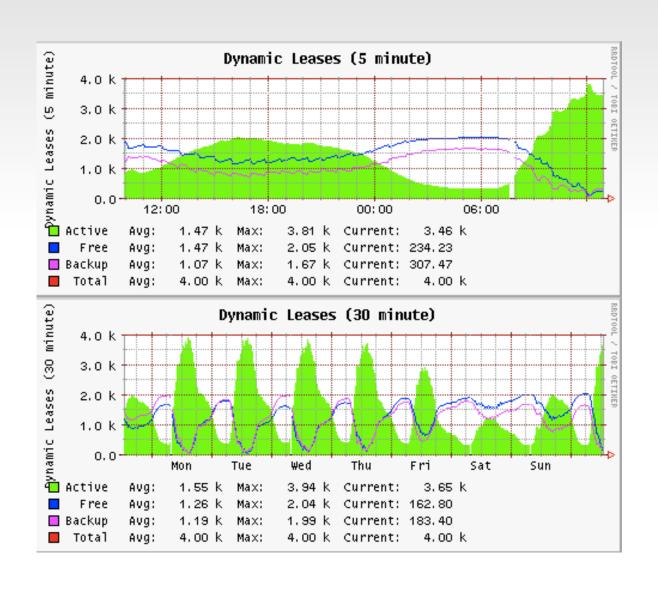
- Contadores por *mailer* (local, esmtp, etc.)
 - Número de mensajes recibidos/enviados
 - Número de bytes recibidos/enviados
 - Número de mensajes denegados
 - Número de mensajes descartados
- Muy importate: Número de mensajes en cola


Estadísticas de Sendmail




Métricas de Web Proxy

- Número de peticiones por segundo
- Peticiones servidas localmente vs. las re-enviadas
 - Diversidad de los destinos web
 - Eficiencia de nuestro proxy
- Número de elementos almacenados en memoria vs. disco


Estadísticas de Squid

Estadísticas de DHCP

