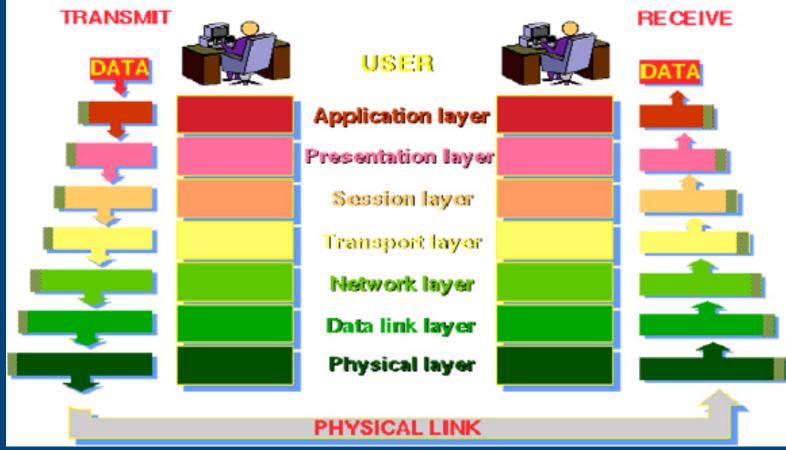
TCP/IP And Unix Network Tools

TCP/IP Networking Review Unix Network Tools

History of the Internet


- U.S. ARPANet (Advanced Research Projects Agency) in the Defense Department
- Design a Reliable, Robust Network Syste
- Detailed History
 - <u>http://www.computerhistory.org/internet_history/</u>
- Some Milestones
 - Arpanet Interface Message Processor RFC1 1969
 - Ethernet 1973
 - Transmission Control Protocol 1974
 - Internet Protocol 1981
 - WWW Hypertext Protocol 1989

Layers

- Complex problems can be solved using the common divide and conquer principle. In this case the internals of the Internet are divided into separate layers.
 - Makes it easier to understand
 - Developments in one layer need not require changes in another layer
 - Easy formation (and quick testing of conformation to) standards
- Two main models of layers are used:
 - OSI (Open Systems Interconnection)
 - TCP/IP

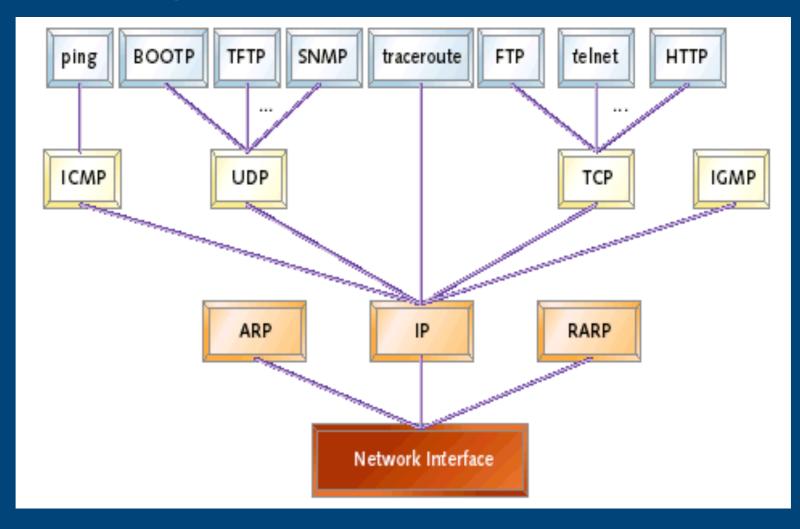
OSI Model

THE 7 LAYERS OF OSI

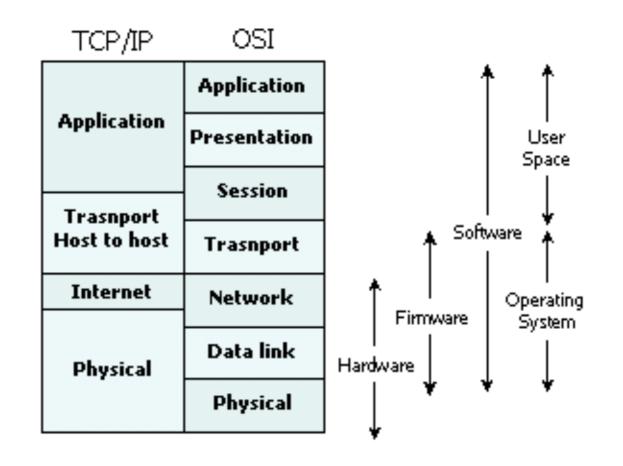
OSI

- Conceptual model composed of seven layers, developed by the International Organization for Standardization (ISO) in 1984.
 - Layer 7 Application (servers and clients etc web browsers, httpd)
 - Layer 6 Presentation (file formats e.g pdf, ASCII, jpeg etc)
 - Layer 5 Session (conversation initialisation, termination,)
 - Layer 4 Transport (inter host comm error correction, QOS)
 - Layer 3 Network (routing path determination, IP[x] addresses etc)
 - Layer 2 Data link (switching media acces, MAC addresses etc)
 - Layer 1 Physical (signalling representation of binary digits)

Acronym: All People Seem To Need Data Processing

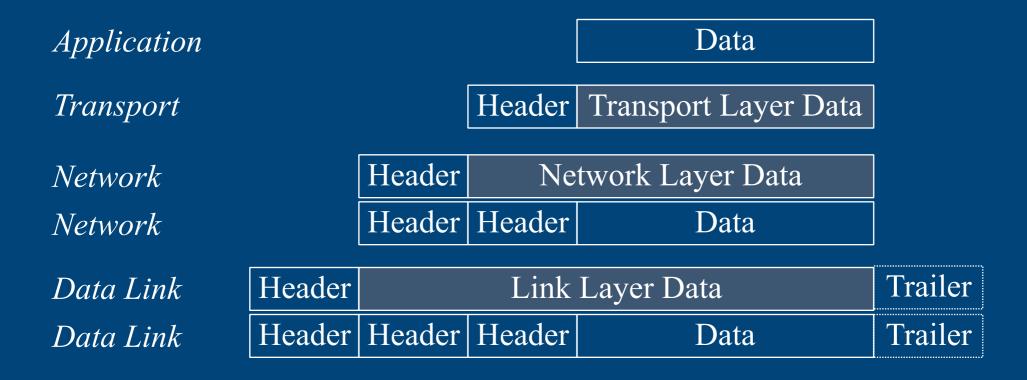

Two Other Layers To Be Aware Of

Political Financial Application Presentation Session Transport Network DataLink Physical


TCP/IP

- Generally, TCP/IP (Transmission Control Protocol/Internet Protocol) is described using three to five functional layers. We have chosen the common DoD reference model, which is also known as the Internet reference model.
 - Process/Application Layer consists of applications and processes that use the network.
 - Host-to-host transport layer provides end-to-end data delivery services.
 - Internetwork layer defines the datagram and handles the routing of data.
 - Network access layer consists of routines for accessing physical networks.

TCP/IP diagram



OSI and <u>TCP/IP</u>

Encapsulation & Decapsulation

• Lower layers add headers (and sometimes trailers) to upper layers packets

Frame, Datagram, Segment, Packet

- Different names for packets at different layers
 - Ethernet (link layer) frame
 - IP (network layer) datagram
 - TCP (transport layer) segment
- Terminology is not strictly followed
 - we often just use the term "packet" at any lay

IP Internet Protocol

- RFC 791
 - <u>http://www.faqs.org/rfcs/rfc791.html</u>
- Connectionless, Best-Effort Protocol
- Supports Fragmentation and Reassembly
- IP Header is Checksummed At Each Hop
- TTL Counter Decremented at Each Routing Hop
- 32-bit Globally Unique Addresses
- Grouped Into Networks: Address & Netmask
- Addresses Allocated By Registrars

IP Internet Protocol

+	Bits 0-3	4–7	8–15	16-18	19–31						
0	Version	Header length	Type of Service (now DiffServ and ECN)		Total Length						
32		ldentif	ication	Flags	Fragment Offset						
64	Time to Live Protocol Header Checksum										
96	Source Address										
128	Destination Address										
160	Options										
160											
or 192+	Data										
1324											

So what is an IP address anyway?

• 32 bit number (4 octet number) can be represented in lots of ways:

133	27	162	125
-----	----	-----	-----

10000101 000	11011 10100010	01111101
--------------	----------------	----------

85 1B	A2	7D
-------	----	----

More to the structure

- Hierarchical Division in IP Address:
 - Network Part (Prefix)
 - describes which physical network
 - Host Part (Host Address)
 - describes which host on that network

205 . 154 . 8	1
11001101 10011010 00001000	00000001
Network – Boundary can be anywhere	Host
	C O 1 */

• very often NOT at a multiple of 8 bits

Network Masks

- Network Masks help define which bits are used to describe the Network Part and which for hosts
- Different Representations:
 - decimal dot notation: 255.255.224.0
 - binary: 11111111 11111111 11100000 00000000
 - hexadecimal: 0xFFFFE000
 - number of network bits: /19
- Binary AND of 32 bit IP address with 32 bit netmask yields network part of address

Sample Netmasks

 137.158.128.0/17
 (netmask 255.255.128.0)

 1111 111
 1111 111
 1

 000 0000
 0000 0000

 1000 1001
 1001 1110
 1

 000 0000
 0000 0000

 205.37.193.128/26
 (netmask 255.255.255.192)

 1111 111
 1111 111
 111 111

 1100 1101
 0010 0101
 1100 0001
 10

Special IP Addresses

- All 0's in host part: Represents Network
 - e.g. 193.0.0/24
 - e.g. 138.37.128.0/17
- All 1's in host part: Broadcast
 - e.g. 137.156.255.255 (137.156.0.0/16)
 - e.g. 134.132.100.255 (134.132.100.0/24)
 - e.g. 190.0.127.255 (190.0.0/17)
- 127.0.0/8: Loopback address (127.0.0.1)
- 0.0.0.0: Various special purposes

Allocating IP addresses

- The subnet mask is used to define size of a network
- E.g a subnet mask of 255.255.255.0 or /24 implies 32-24=8 host bits

 -2^{8} minus 2 = 254 possible hosts

 Similarly a subnet mask of 255.255.255.224 or / 27 implies 32-27=5 hosts bits

 -2^{5} minus 2 = 30 possible hosts

Private Addresses

- RFC1918 Addresses
- Private IP address ranges:
 - -10/8(10.0.0-10.255.255.255)
 - -192.168/16(192.168.0.0 192.168.255.255)
 - -172.16/12(172.16.0.0 172.31.255.255)
- Not Routed To The Global Internet
- Often Used In Firewall and VPN Networks
- NAT Network Address Translation Used to Connect Public Address(es) to A Private Segment

UDP - User Datagram Protocol

- Transport Layer Layer 4
- Encapsulated Within IP
- RFC 768
 - <u>http://www.faqs.org/rfcs768.html</u>
- Connectionless, Unreliable
- 16-bit Source, 16-bit Destination Ports
- Examples: DNS, TFTP

UDP - User Datagram Protocol

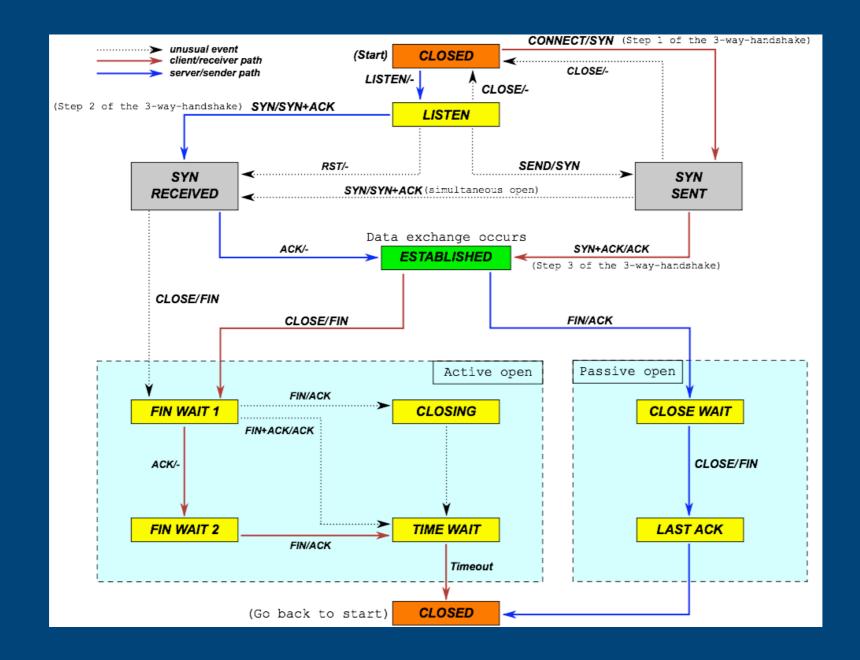
+	Bits 0 - 15	16 - 31			
0	Source Port	Destination Port			
32	Length	Checksum			
64	Da	ta			

TCP - Transmission Control Protocol

- Encapsulated within IP
- Connection Oriented, Reliable Protocol
- RFC793
 - <u>http://www.faqs.org/rfcs/rfc793.html</u>
- Ordered by Sequence/Acknowledge Numbers
- Checksum over both the Header and the Data
- A "Well Behaved Protocol
 - Retransmit, Slow Start, Windows, Congestion Avoid
- Examples: HTTP, SMTP, FTP, SSH, TELNET

TCP - Transmission Control Protocol

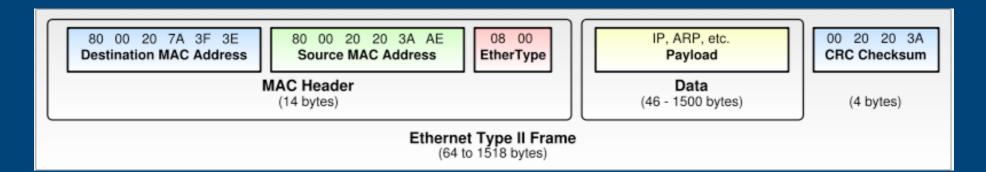
Bit offset	Bits 0–3	4–7	8–15								16–31		
0	Source port										Destination port		
32	Sequence number												
64	Acknowledgment number												
96	Data offset	Reserved	CWR	ECE	URG	ACK	PSH	RST	SYN	FIN	Window Size		
128	Checksum										Urgent pointer		
160	Options (optional)												
160/192+	Data												


TCP - Open and Close

Connection Setup Involves Send/Receive/Send

	CLOSED	• CI	LIENT		SERVER	STATE LISTEN	
1.	SYN-SENT	>	(SEQ=100)	(CTL=SYN)		>	SYN-RECEIVED
2.	ESTABLISHED	<	(SEQ=300)	(ACK=101)	(CTL=SYN,ACK)	<	SYN-RECEIVED
3.	ESTABLISHED	>	(SEQ=101)	(ACK=301)	(CTL=ACK)	>	ESTABLISHED
	ESTABLISHED	>	(SEQ=101)	(ACK=301)	(CTL=ACK) (DATA)	>	ESTABLISHED

Connection Teardown

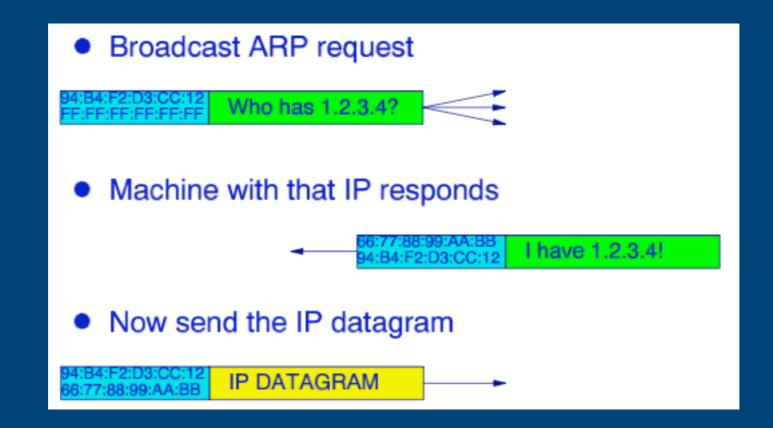

ICMP - Internet Control Message Protocol

- Error Message Reporting for IP Networks
- RFC 792
 - <u>http://www.faqs.org/rfcs/rfc791.html</u>
- Messages Contain a "Type" and "Code"
- Ping Tool
 - Send Echo Request: Type 8, Code 0
 - Receive Echo Reply: Type 0, Code 0
- Many Other Uses
 - Destination Unreachable / Port Unreachable
 - Fragmentation Needed
 - TTL Exceeded

Ethernet

- Layer 2, Link Layer
- Most Common Carrier For IP
- IEEE 802.3 Standards
- 48-bit Addresses (6 Bytes)
- "Unique" Addresses, 1st 3 Bytes is the Vendor OUI: Organizationally Unique Identifier
- CSMACD, Carrier Sense Multiple Access Collision Detect

Ethernet



- 1500 Byte Data Payload (MaxTransmissionUnit)
- 6+6+2+4 = 1518 Byte Frame
- IEEE 802.1q VLANS = 1522 Byte Frame

ARP - Address Resolution Protocol

- Connects Layer 2 (Ethernet) to Layer 3 (IP)
- Simple Request/Reply Protocol
- Initial Request is Broadcast to FF:FF:FF:FF:FF:FF
- Packet contains Source IP and MAC
- Reply contains Reply IP and MAC
- Clients maintain a local ARP Cache

ARP - Address Resolution Protocol

ARP - Issues

- Gratuitous ARP
 - Clients may broadcast "I AM HERE!" at Any Time
 - Other Clients may choose to Update ARP Cache
- Forged ARP
 - MAC addresses can be Forged "ARP Spoofing"
 - ARP messages can be Forged "ARP Poisoning"
- Clients can configure Static ARP Entries

Communication Steps

- Sequence of Events in Most Communication Involves Many Steps
 - Interface Configuration: IP, Netmask, Broadcast
 - DNS Resolver Configuration
 - DNS Server Response
 - Default Route
 - ARP Request or ARP Cache Lookup
 - Application Server

Communication Steps

- Example: Web to <u>http://www.ubuntu.org</u>/
 - lookup hostname <u>www.ubuntu.org</u>
 - lookup address of nameserver
 - arp for nameserver or default route
 - arp for default router
 - send DNS request
 - wait for DNS reply
 - arp for <u>www.ubuntu.org</u> IP or default route
 - TCP 3-way Handshake with <u>www.ubuntu.org</u>

Unix Tools

- Network Interface
 - ifconfig set/check interface configuration
 - netstat check network statistics
- Layer 2, Link Layer
 - arp set/check ARP cache
 - ip neighbor set/check ARP cace
 - arping send/receive ARP
- Layer 3, Network Layer
 - ping
 - traceroute
 - mtr
- Layer 4, Transport Layer
 - tcptraceroute